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ARTICLE INFO ABSTRACT 

Received:  26/4/2024 In this study, ZnO nanorods were fabricated by hydrothermal method at 

temperatures of 100, 120, 140 and 160 
o
C. ZnO nanorods have diameters from 

50 nm to 100 nm and lengths up to several µm with the typical hexagonal 

structure of ZnO material with (100), (002), (101), (102), (110), (103), (200), 

(112), (004), (201), and (202) lattice planes. The positions of the peaks are 

almost unchanged with different hydrothermal temperatures. The Raman 

scattering analysis shown characteristic vibration modes of ZnO material at 100 

cm
-1

, 200 cm
-1

, 331 cm
-1

, 378 cm
-1

 and 436 cm
−1

 related to A1, E2 energy levels. 

UV-vis results show that the material absorbs strongly in the near ultraviolet 

band at 374 nm and gives characteristic emission of ZnO at 401 and 455 nm. 

The decomposition process of Methylene blue (MB) and Rhodamine B (RhB) 

for ZnO nanorod samples was studied under the visible light. The results shown 

that the synthesized ZnO material has the ability to decompose MB up to 

94.96% and RhB up to 17.82 % after 120 minutes of illumination. 
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THÔNG TIN BÀI BÁO TÓM TẮT 

Ngày nhận bài:  26/4/2024 Trong nghiên cứu này, thanh nano ZnO được chế tạo bằng phương pháp thủy 

nhiệt ở nhiệt độ 100, 120, 140 và 160 
o
C. Các thanh nano ZnO có đường kính 

từ 50 nm đến 100 nm và có chiều dài lên tới vài µm với cấu trúc lục giác đặc 

trưng của vật liệu ZnO với các mặt phẳng (100), (002), (101), (102), (110), 

(103), (200), (112), (004), (201), và (202). Vị trí của các đỉnh hầu như không 

thay đổi ở các nhiệt độ thủy nhiệt khác nhau. Phân tích tán xạ Raman cho 

thấy các dạng dao động đặc trưng của vật liệu ZnO ở 100 cm
-1

, 200 cm
-1

, 331 

cm
-1

, 378 cm
-1

 và 436 cm
-1

 liên quan đến các mức năng lượng A1, E2. Kết quả 

UV-vis cho thấy vật liệu hấp thụ mạnh ở vùng tử ngoại gần ở bước sóng 374 

nm và cho phát xạ đặc trưng của ZnO ở bước sóng 401 và 455 nm. Quá trình 

phân hủy xanh Methylene (MB) và Rhodamine B (RhB) đối với các mẫu 

thanh nano ZnO được nghiên cứu dưới ánh sáng khả kiến. Kết quả cho thấy, 

vật liệu thanh nano ZnO có khả năng phân hủy MB lên tới 94,96% và RhB 

lên tới 17,82% sau 120 phút chiếu sáng. 
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1. Introduction 

In recent years, the use of various dyes in industries such as textile, leather, paper, and other 

fields has increased significantly. However, polluted water from industries containing dyes has 

significantly affected biological life and human water sources due to their toxicity and persistent 

decomposition. Metal oxide semiconductors such as TiO2, ZnO, and SnO2 are used as effective 

photocatalysts for environmental degradation reactions [1] – [4]. Their unique properties such as 

high electron mobility, fast charge transfer, tunable band gap, stability, low cost, and 

environmental friendliness make them candidates for use as photocatalysts in environmental 

applications [2] – [7]. 

ZnO is the most common n-type semiconductor material, with unique physical and chemical 

properties [8] – [12]. Thus, ZnO is a promising material for various applications such as 

photocatalysis, solar cells, sensors, and optoelectronics. In the field of photocatalysis, the surface 

area of the material is important to increase the adsorption rate of dye molecules, absorbing 

incident light for the purpose of decomposing dye molecules [4], [5], [11] – [14]. In 

semiconducting metal oxides, ZnO exhibits enhanced photocatalytic activity through the 

generation of oxygen vacancies on the surface [4]. Oxygen vacancies serve as active sites for 

adsorption of contaminants and facilitate photocatalysis by acting as charge transfer gates 

between ZnO nanomaterials and molecules adsorbed [4]. Creating oxygen vacancies on the ZnO 

surface can improve the photocatalytic performance of the material considerably, leading to 

better environmental remediation results [4]. In addition, the photocatalytic process of ZnO 

depends on the properties of the material such as crystallite size, shape as well as synthesizing 

conditions of materials [8], [9], [15], [16]. 

In recent years, several new methods have been developed to control ZnO nanostructures and 

morphology [6], [7], [11], [17] – [21]. ZnO with many different morphologies such as nanowires, 

nanosheets, nanorods, nanotubes, nanonails, nanospheres, nanoneedles, nanopins, nanoflowers, 

nanobelts, and nanopencils are prepared by different methods such as vapor phase, wet 

chemistry, and chemical reactions [6], [7], [17] – [21]. Nowadays, photocatalytic performance is 

tuned and enhanced by creating desirable physicochemical properties related to size, and 

morphology [5], [14], [15]. Targeting the degradation of environmental pollutants depends on the 

specific crystal face expression of nanomaterials. Therefore, crystalline surface engineering is a 

very importance strategy. However, controlling the aspect of ZnO photocatalysts remains a 

challenge, from which their photocatalytic activity and industrial applications are limited. 

In this study, we report on the hydrothermal synthesis of ZnO nanorods and the change in 

photocatalytic properties with different hydrothermal temperatures in the decomposition of 

Methylene blue (MB) and Rhodamine B (RhB) under visible light. Firstly, the influence of 

hydrothermal temperature on the crystal structure, material morphology, and optical properties of 

the material is studied. Then, the photocatalytic properties of ZnO nanorods in the degradation of 

MB and RhB were compared. Furthermore, the relationship between the structural, morphology, 

optical, and photocatalytic properties of ZnO nanorods was discussed. 

2. Experiment  

2.1. Materials 

Zinc acetate dihydrate (Zn(CH3COO)2.2H2O), potassium hydroxide (KOH), methanol 

(CH3OH), and MB (C16H18ClN3S) were purchased from Sigma-Aldrich. All other chemicals were 

of analytical grade and used as received without purification. 

2.2. Synthesis of ZnO nanorods 

First, 10 g of Zn(CH3COO)2.2H2O in 70 ml of methanol were dissolved with a magnetic 

stirrer at room temperature for 30 minutes to obtain solution A. Next, 5 g of KOH were dissolved 
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in 50 ml of methanol with a magnetic stirrer at room temperature for 30 minutes to obtain 

solution B. Solution B was then dropped slowly into solution A, and the mixture was stirred 

slowly at room temperature for 30 minutes. Then, this solution mixture was placed in a water 

bath at a temperature of 100 °C, and stirring was continued for 25 minutes to form a 

homogeneous solution. The resulting mixture was poured into a Teflon autoclave and 

hydrothermally heated at a temperature of 100 ℃ for 24 h. After the hydrothermal process, the 

hydrothermal autoclave was naturally cooled to room temperature. The resulting precipitate was 

filtered and washed with a centrifuge at a speed of 4000 rpm and every 5 minutes with distilled 

water and methanol to remove excess ions remaining in the sample. Finally, the precipitate was 

dried at 80 ℃ for 24 h. The final product obtained is white ZnO powder. ZnO samples with 

hydrothermal temperatures of 120
 
°C, 140 °C, and 160 °C were fabricated through a similar 

process. These samples are named ZnO-100 °C, ZnO-120 °C, ZnO-140 °C, and ZnO-160 °C 

corresponding to hydrothermal temperatures of 100 °C, 120 °C, 140 °C, and 160 °C. 

2.3. Characterization techniques 

An X-ray diffractometer with Cu-Kα radiation at wavelength λ = 1.5406 Å was used to study 

the crystal structure and size of the ZnO material. A UV-visible spectrophotometer (V-650 Jasco, 

USA) was used to measure the UV-vis absorption spectra of the ZnO material. A field emission 

scanning electron microscope (FESEM; Hitachi S-4800) was used to study the surface 

morphology and size of the ZnO nanorods. The photoluminescence properties of materials used 

studied by photoluminescence spectroscopy at an excitation wavelength of 370 nm using a 250 

W Xe lamp and the structural properties and vibration modes of ZnO samples was investigated 

by Raman scattering spectra. 

2.4. Photocatalytic degradation experiments 

MB and RhB dyes were used as contaminants to evaluate the photocatalytic performance of 

ZnO nanorod samples. In this experiment, 0.01 g of catalyst was dissolved into 100 mL of dye 

solution in a photocatalytic reactor to decompose MB and RhB. The catalyst and dye solution 

were stirred magnetically for 30 minutes in the dark. Then, the solution mixture was illuminated 

with visible light. Every 20 minutes of illumination, 5 mL of the mixture were taken out and 

centrifuged to remove the catalyst and measure the absorption spectra of the remaining solution 

to investigate the photocatalytic decomposition of the dye. The photocatalytic degradation 

efficiency of ZnO nanorod material is determined in % using the following formula [21]–[23]:  

0

0

% 100tC C
D

C


       (1) 

where C0 and Ct are the absorbance of the dye before illumination and at different illumination 

durations, respectively. 

3. Results and Discussion 

X-ray diffraction pattern is used to determine the crystal phase, structure, and purity of ZnO 

nanomaterials. Figure 1 shows the X-ray diffraction patterns of ZnO nanorods with different 

hydrothermal temperatures. The results show that the diffraction peaks are intense and sharp, 

indicating a high degree of crystallinity of the ZnO nanomaterial. The diffraction peak positions 

of the ZnO samples were observed at 31.62°, 34.27°, 36.06°, 47.35°, 56.32°, 62.65°, 66.16°, 

67.77°, 68.88°, 72.31°, and 76.84°, corresponding to the (100), (002), (101), (102), (110), (103), 

(200), (112), (004), (201), and (202) crystal planes of ZnO [20], [21], [23], [24]. The positions of 

these diffraction peaks are consistent with the JCPDS standard card (PDF card no. 04-003-2106) 

for the hexagonal structure of the ZnO crystal lattice [21]. When the hydrothermal temperature is 

changed, the position of the diffraction peaks does not change. This finding proves that 
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hydrothermal temperature does not affect the diffraction peak position of ZnO. However, with 

different hydrothermal temperatures of 100 °C, 120 °C, and 160 °C, the diffraction peak (101) has 

greater intensity than the diffraction peak (100). This condition proves that ZnO nanorods grow 

mainly in the (101) direction. However, when ZnO nanorods are fabricated with a hydrothermal 

temperature of 140 °C, the (100) diffraction peak surprisingly has a greater intensity than the (101) 

diffraction peak, thus demonstrating that the ZnO nanorods grow mainly in the (100) direction. The 

(100) peak has a higher intensity than the (101) peak, which is explained by the fact that 140 °C is 

the appropriate temperature to grow ZnO nanocrystals in the (100) direction compared to the (101) 

direction. This result is interesting, indicating that changing the hydrothermal temperature enables 

the growth direction of ZnO nanorods to be controlled.  

 
Figure 1. X-ray diffraction patterns of ZnO nanorods at different hydrothermal temperatures 

From the results of X-ray diffraction measurements, we can determine the crystallite size of 

ZnO nanorods using the Debye–Scherrer expression [24]–[26]. 

      (     )⁄                               (2) 

where D is the average crystallite size, λ is the wavelength of the X-ray (1.5406 Å), θ is half 

the Bragg diffraction angle, and β stands for FWHM. In addition, the interplane distance (d), 

lattice constants a and c of ZnO are determined by formulas (3) and (4) [27], [28]. 

   2   n d sin   (3) 

 

2 2 2

2 2 2

1 4
( )

3

h hk k l

d a c

 
   (4) 

where h, k, and l are Miller indices; a and c are lattice constants; and d is the interplane distance. 

The average crystal size, the interplane distance, and lattice constants are presented in Table 1. 

Figure 2 presents FESEM images of ZnO samples fabricated at different hydrothermal 

temperatures: (A1−A2) 100 °C, (B1−B2) 120 °C, (C1−C2) 140 °C, and (D1−D2) 160 °C. The results 

show that the ZnO nanorods formed in Figures A1–A2 grow uniformly. Individual nanorods are 

about 100 nm to 200 nm wide and about 1 μm to 2 μm long. Evidently, the ZnO nanorods exhibit 

a distinct hexagonal structure. When the hydrothermal temperature increases to 120 °C in Figures 

B1–B2, the width of the ZnO nanorods is about 50 nm to 70 nm, and the length of the ZnO 

nanorods is about 2 μm to 3 μm. Compared with the hydrothermal sample at 100 °C, the width of 

the ZnO nanorods decreased significantly and the length of the ZnO nanorods increased. This 

condition can be explained by the fact that at high hydrothermal temperature and pressure, ZnO 

crystal seeds grow faster, causing the width of the ZnO nanorod to decrease and the length of the 

ZnO nanorod to increase. When the hydrothermal temperature continues to increase to 140 °C 

(Figures C1–C2) and 160 °C (Figures D1–D2), the width of the ZnO nanorod and the length of the 

ZnO nanorod are similar to those of the hydrothermal sample at 120 °C. From this observation, 

we can control the width and length of ZnO nanorods by using the hydrothermal temperature. 

This result is interesting for the study of photocatalytic properties. In comparison with the crystal 
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size results calculated from XRD shows that the crystallite sizes calculated from XRD are 

generally smaller than those observed from FESEM images. This result is explained as follows: 

Crystallite crystal size is calculated from XRD. These are homogeneous crystalline regions 

(coherent scattering regions). The ideal crystal is an infinite homogeneous region where XRD 

only obtains peaks that are lines. But in reality, the region where the crystals are periodically 

arranged uniformly is only small, so the XRD peak is broadened. The smaller the homogeneous 

area, the wider the peak. When observing nanorods from FESEM images, these nanorods contain 

several different uniform crystalline regions, so the crystallite size is smaller than the size 

observed from FESEM. If the nanoparticles are small, each nanoparticle is a uniform region, then 

the crystallite size is equal to the particle size. 

Table 1. Average crystallite size, lattice constants, and d-spacing of ZnO nanorods at different 

hydrothermal temperatures 

Sample 
Position 

(2θ) 
(hkl) FWHM 

Crystallite size 

(D) (nm) 

Average crystallite 

size (nm) 

d-spacing 

(nm) 

Lattice parameters 

a = b (nm) c (nm) 

ZnO-

100 °C 

31.75 (100) 0.09 95.89 

97.28 

 

0.26 

 

0.30 0.52 34.40 (002) 0.08 108.62 

36.24 (101) 0.10 87.34 

ZnO-

120 °C 

31.74 (100) 0.20 43.15 

54.58 

 

0.26 

 

0.30 0.52 34.40 (002) 0.11 78.99 

36.23 (101) 0.21 41.59 

ZnO-

140 °C 

31.75 (100) 0.15 57.53 

66.34 

 

0.26 

 

0.30 0.52 34.40 (002) 0.10 86.89 

36.23 (101) 0.16 54.59 

ZnO-

160 °C 

31.75 (100) 0.17 50.76 

66.23 

 

0.26 

 
0.30 0.52 34.40 (002) 0.09 96.55 

36.24 (101) 0.17 51.38 
 

   

   

  

 

Figure 2. FESEM images of ZnO nanorods at different hydrothermal temperatures 
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Figure 3. Raman spectra of ZnO nanorods: (a) ZnO-120 °C, (b) ZnO-160 °C 

Raman spectroscopy was used to study the presence and absence of vibrational modes in ZnO 

nanorod samples [29]. Figure 3 shows the Raman scattering spectra of ZnO-120 °C, ZnO-160 °C 

samples. The main Raman vibrational modes of the wurtzite structure of ZnO were found for 

ZnO samples. This result is consistent with the X-ray diffraction results. For ZnO nanorod 

samples, the most intense Raman peaks is located at 100 cm
-1

 and 436 cm
−1

 corresponding to the 

2

lowE and 2

highE  Raman modes [28], [29]. Other Raman peaks were observed at 200 cm
-1

,  331 cm
-

1
, and 378 cm

-1
  corresponding to the 22 lowE , 

ow

2 2

high lE E , 1(TO)A  modes [28], [29]. E2 modes 

are unpolarized and do not exhibit LO and TO splitting [29]. E2 mode is divided into 2

highE  and 

ow

2

lE  due to its frequency at point Γ in the Brillouin zone [29]. 

 
Figure 4. PL spectra of ZnO nanorods at different hydrothermal temperatures 

The photoluminescence spectra of ZnO nanorods are plotted in Figure 4. The 

photoluminescence spectra were measured at room temperature with an excitation wavelength of 

370 nm. The photoluminescence spectra of ZnO nanorod samples include two emission bands: 

near-band edge (NBE) emission at a wavelength of 401 nm and visible emission band at a 

wavelength of 455 nm. The NBE emission is related to the band-to-band recombination of ZnO 

nanocrystals [16], [23] – [25], [30], [31]. The shift of the diffraction peak of nanorods can be 

related to the morphology and size of the ZnO nanostructures [16], [23]–[25], [30]. The visible 

emission band is due to intrinsic defects such as zinc vacancies and the combination of zinc 

vacancies and zinc interstitials [16], [23] – [25].  

UV-vis absorption spectroscopy was performed to study the absorption properties of ZnO 

nanorod samples. The characteristic ZnO peaks of the ZnO nanorod samples were observed in 

the range of 350–400 nm [8], [20], [24], [32]. As observed in Figure 5, the values of UV peaks 

100 200 300 400 500 600 700 800 900 1000

Ehigh
2

A
1
(T

O
)

E
low
2

2E
low
2

E
h

ig
h

2
-E

lo
w

2In
te

n
s
it
y
 (

a
.u

.)

Raman Shift (cm-1)

(a) ZnO-120 °C

100 200 300 400 500 600 700 800

(b) ZnO-160 °C

Ehigh
2

A
1
(T

O
)

E
h
ig

h
2

-E
lo

w
2

2E
low
2

E
low
2

In
te

n
s
it
y
 (

a
.u

.)

Raman Shift (cm-1)

390 400 410 420 430 440 450 460

In
te

ns
ity

 (
a.

u.
)

Wavelength (nm)

 100 °C

 120 °C

 140 °C

 160 °C

401 nm

Band to band

455 nm

defects



TNU Journal of Science and Technology 229(06): 302 - 312 

 

http://jst.tnu.edu.vn                                                  308                                                 Email: jst@tnu.edu.vn 

are 377, 376, 376, and 374 nm, which correspond to the samples ZnO-100 °C, ZnO-120 °C, 

ZnO-140 °C, and ZnO-160 °C. The position of the UV-vis absorption peak of the samples did not 

change much. However, the intensity of the UV-vis absorption peak of the ZnO nanorod samples 

increased significantly when the hydrothermal temperature increased from 100 °C to 160 °C. 

This condition is explained by the increased crystallinity of the sample, causing the absorption 

intensity to increase. 

  
  

Figure 5. (a) UV-vis absorption spectra and (b, c) Tauc plots of ZnO nanorods at different 

hydrothermal temperatures 

Formula (5) is used to calculate the band gap value of ZnO nanorod samples [8], [20], [32], 

where α indicates the absorption coefficient, Eg is the band gap, hv represents the photon energy, 

and A is a constant. As shown in Figs. 5b and 5c, (αhν)
2
 versus (hν) is plotted to calculate the 

band gap energy. The band gap of the samples ZnO-100 °C, ZnO-120 °C, ZnO-140 °C, and ZnO-

160 °C is calculated as 2.53, 2.90, 2.96, and 3.09 eV, respectively. This result shows that when 

the hydrothermal temperature increases from 100 °C to 160 °C, the band gap increases from 2.53 

eV to 3.09 eV. This condition can be explained by the decrease in nanorod width as the 

hydrothermal temperature increases. 

   
1/2

  – gh A h E        (5) 

  

  

Figure 6. UV-vis absorption spectra of MB dye solution containing ZnO nanorods during illumination: 

(a) ZnO-100 °C, (b) ZnO-120 °C, (c) ZnO-140 °C, and (d) ZnO-160 °C 
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Figure 7. Photocatalytic performance of MB degradation with ZnO-100 °C,  

ZnO-120 °C, ZnO-140 °C, and ZnO-160 °C nanorods 

The photocatalytic properties of ZnO nanorods were studied by MB decomposition. Figure 6 

shows the absorption spectra of MB solution containing nanorods according to illumination time. 

The lighting time surveyed was from 0 to 120 minutes. The results show an absorption peak at 

655 nm and an absorption shoulder at 630 nm, which are the characteristic absorption peaks of 

the MB solution [8], [21], [23], [27]. When the illumination time increases from 0 min to 120 

min, the position of the MB absorption peaks does not change, while the MB absorption intensity 

decreases sharply.  

To study the photocatalytic performance of ZnO nanorods over time, we analyzed the change 

in C/C0 concentration ratio with illumination time. Figure 7 shows the photocatalytic degradation 

performance of ZnO nanorod samples with different hydrothermal times for MB dye. The results 

showed that the MB photodegradation efficiency of these samples ranged from 89.36%, 94.96%, 

92.61% and 91.85% with ZnO-100 °C, ZnO-120 °C, ZnO-140 °C, and ZnO-160 °C samples. 

Photocatalytic performance depends on crystal size and surface area. As the crystallite size is 

calculated from XRD and observed nanorod size from FESEM images, we see that the ZnO-

100 °C sample has the largest size and therefore the smallest surface area. Therefore, the 

photocatalytic degradation efficiency is smaller than the ZnO-120 °C, ZnO-140 °C, and ZnO-

160 °C samples. Meanwhile, ZnO nanorods from the ZnO-120 °C, ZnO-140 °C, and ZnO-160 °C 

samples have similar crystallite size and morphology, so the photocatalytic degradation 

efficiency of the samples works similar. 

Research on the photocatalytic properties of ZnO nanorods was also conducted by decomposing 

RhB solution containing ZnO nanorods under the influence of light. Figure 8 shows the absorption 

spectra of RhB containing ZnO nanorod samples with different illumination times. The lighting 

time surveyed was from 0 minutes to 120 minutes. The results showed that a characteristic 

absorption peak of RhB was observed at 550 nm in all samples [2], [7], [17], [33]. As the 

illumination time increased, the RhB absorption peak intensity decreased slightly in all samples.  

  

Figure 8. Time-dependent photodegradation absorption spectra of RhB dye in the presence of ZnO 

nanorods during illumination: (a) ZnO-120 °C, (b) ZnO-160 °C 
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To study the change in RhB absorption intensity according to illumination time, we plot the 

change in C/C0 of RhB solution with different samples (where C is the RhB absorption 

concentration at time t, and C0 is the absorption concentration of RhB before illumination). 

Figure 9 shows the photocatalytic performance of RhB degradation with ZnO-120 °C, ZnO-

160 °C. For ZnO nanorod samples with different hydrothermal temperatures, the decomposition 

efficiency ranged from 17.82% to 17.25% with ZnO-120 °C, ZnO-160 °C.  

 
Figure 9. Photocatalytic performance of RhB degradation with ZnO-120 °C, ZnO-160 °C 

A comparison of the photocatalytic degradation performance of ZnO nanorod samples in the 

degradation of MB and RhB shows that the ZnO nanorods photodegrades MB better than they 

photodegrades RhB. The photocatalytic degradation efficiency of ZnO nanorods for MB is about 

over 90%, while that for RhB is only about 18%. Previous results of photocatalytic research on 

MB and RhB show that the degradation efficiency of MB is always higher than that of RhB [34–

38]. This is explained by the different nature of the chemical bonds and composition in MB and 

RhB molecules. Chemical structure of Rhodamine B includes four benzene rings, while chemical 

structure of Methylene Blue includes three benzene rings [38]. RhB includes three interconnected 

rings and one separate ring [38], so RhB has high stability.Therefore, RhB is more difficult to 

degrade than MB. 

4. Conclusions 

We successfully fabricated ZnO nanorods by using the hydrothermal method at hydrothermal 

temperatures from 100 °C to 160 °C. ZnO nanorods have a width of about 50 nm to 70 nm and a 

length of about 2 to 3 μm. As the hydrothermal temperature increases, the width of the ZnO 

nanorods decreases and the length of the nanorods increases. Studying the X-ray diffraction of 

the samples shows that the ZnO nanorods mainly grew in the (101) direction. The Raman 

scattering spectrum of ZnO nanorods shows that the characteristic peaks of ZnO are clearly 

evident, with the most intense Raman peaks is located at 100 cm
-1

 and 436 cm
−1

 corresponding to 

the 2

lowE and 2

highE Raman modes, and other Raman peaks were observed at 200 cm
-1
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, 
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ow

2 2

high lE E , 1(TO)A modes. The photoluminescence 

spectra of the ZnO nanorod samples show two emission bands at 401 nm corresponding band to 

band emission and at 455 nm corresponding to the defects. The absorption spectra of ZnO 

nanorods shows a characteristic absorption peak of ZnO at 376 nm corresponding to the band 

absorption of ZnO. The MB photodegradation efficiency of these samples ranged from 89.36%, 

94.96%, 92.61% and 91.85% with ZnO-100 °C, ZnO-120 °C, ZnO-140 °C, and ZnO-160 °C 

samples. A comparison of the photocatalytic degradation of RhB and MB indicates that the 

degradation of MB has a higher efficiency than the degradation of RhB with the same ZnO 

nanorod sample. 
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