



- Công bố khoa học và công nghệ Việt Nam
Địa chất học
Nguyễn Đức Mạnh(1), hồ Sỹ An, Nguyễn Hải Hà, Phạm Bá Khải, Nguyễn Đình Trung, Nguyễn Đình Dũng
Nghiên cứu ứng dụng kỹ thuật trí tuệ nhân tạo dự báo áp lực tiền cố kết của đất yếu tại một số khu vực ở đồng bằng Bắc Bộ
Tạp chí Địa Kỹ thuật
2021
03
26-35
0868-279X
TTKHCNQG, 0868-279X
- [1] Sebastian Raschka, Vahid Mirjalili (2017), Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow,
- [2] Michael Bowles (2015), Machine Learning in Python,
- [3] (), Tổng quan về Regression - Phân tích hồi quy,
- [4] Binh Thai Pham, Manh Duc Nguyen, Kien-Trinh Thi Bui, Indra Prakash, Kamran Chapi, Dieu Tien Bui (2019), A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil,CATENA
- [5] Debasish Basak, Srimanta Pal, Dipak Chandra Patranabis (2007), Support vector regression,Neural Information Processing – Letters and Reviews
- [6] (), Python Essays (Website),
- [7] J. A. Knappett, R. F. Craig (2012), Craig’s Soil Mechanics,
- [8] Manh Duc Nguyen, Binh Thai Pham, Tran Thi Tuyen, Hoang Phan Hai Yen, Indra Prakash, Thanh Tien Vu, Kamran Chapi, Ataollah Shirzadi, Himan Shahabi, Jie Dou, Nguyen Kim Quoc, Dieu Tien Bui (2019), Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis,The Open Construction and Building Technology Journal
- [9] B. Sharma, P.K. Bora (2003), Plastic limit, liquid limit and undrained shear strength of soil – reappraisal,J. Geotech. Geoenviron. Eng.
- [10] B.M. Das (2007), Principles of geotechnical engineering,
- [11] A. Trigila, C. Iadanza, C. Esposito, G. Scarascia-Mugnozza (2015), Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy),Geomorphology
- [12] V. Rodriguez-Galiano, M. SanchezCastillo, M. Chica-Olmo, M. Chica-Rivas (2015), Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines,Ore Geol. Rev.
- [13] Armaghani, M. Tahir (2019), Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns,Eng. Comput.
- [14] H. Chen, P.G. Asteris, D. Jahed Armaghani, B. Gordan, B.T. Pham (2019), Assessing dynamic conditions of the retaining wall: Developing two hybrid intelligent models,Appl. Sci. (Basel)
- [15] P.G. Asteris, A. Moropoulou, A.D. Skentou, M. Apostolopoulou, A. Mohebkhah, L. Cavaleri (2019), Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects,Appl. Sci. (Basel)
- [16] P.G. Asteris, K.G. Kolovos (2019), Self-compacting concrete strength prediction using surrogate models,Neural Comput. Appl.
- [17] P.G. Asteris, K.G. Kolovos, A. Athanasopoulou, V. Plevris, G. Konstantakatos (2019), Investigation of the mechanical behaviour of metakaolin-based sandcrete mixtures,Eur. J. Environ. Civ. Eng.
- [18] B.T. Pham, T-A. Hoang, D-M. Nguyen, D.T. Bui (2018), Prediction of shear strength of soft soil using machine learning methods,Catena
- [19] J. Dou, K-T. Chang, S. Chen, A.P. Yunus, J-K. Liu, H. Xia (2015), Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm,Remote Sens.
- [20] D.C. Camilo, L. Lombardo, P.M. Mai, J. Dou, R. Huser (2017), Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSOpenalized Generalized Linear Model,Environ. Model. Softw.
- [21] S. Miraki, S.H. Zanganeh, K. Chapi, V.P. Singh, A. Shirzadi, H. Shahabi (2019), Mapping groundwater potential using a novel hybrid intelligence approach,Water Resour. Manage.
- [22] B.T. Pham, A. Jaafari, I. Prakash, S.K. Singh, N.K. Quoc, D.T. Bui (2019), Hybrid computational intelligence models for groundwater potential mapping,Catena
- [23] K. Khosravi, B.T. Pham, K. Chapi, A. Shirzadi, H. Shahabi, I. Revhaug, I. Prakash, D. Tien Bui (2018), A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran,Sci. Total Environ.
- [24] Jie Dou, Ali P. Yunus, Yueren Xu, Zhongfan Zhu, Chi-Wen Chen, Mehebub Sahana, Khabat Khosravi, Yong Yang, Binh Thai Pham (2019), Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China,Natural Hazards
- [25] Q. He, Z. Xu, S. Li, R. Li, S. Zhang, N. Wang (2019), Novel Entropy and Rotation Forest-Based Credal Decision Tree Classifier for Landslide Susceptibility Modeling,Entropy (Basel)
- [26] P.T. Nguyen, T.T. Tuyen, A. Shirzadi, B.T. Pham, H. Shahabi, E. Omidvar (2019), Development of a Novel Hybrid Intelligence Approach for Landslide Spatial Prediction,Applied Sciences (Basel)
- [27] B.T. Pham, I. Prakash, K. Khosravi, K. Chapi, P.T. Trinh, T.Q. Ngo (2018), A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling,Journal Geocarto International
- [28] B.T. Pham (2018), A novel classifier based on composite hyper-cubes on iterated random projections for assessment of landslide susceptibility,Journal of the Geological Society of India
- [29] B. M. Das, K. Sobhan (2013), Principles of Geotechnical Engineering,Cengage Learning
- [30] A. Casagrande (1936), The determination of the pre-consolidation load and its practical significance,Proceedings of the 1st International Conference on Soil Mechanics