Lọc theo danh mục
liên kết website
Lượt truy cập
- Công bố khoa học và công nghệ Việt Nam
Toán học cơ bản
Lê Thanh Tùng, Trần Thiện Khải(1), Trịnh Tùng
Đối ngẫu lagrange và điều kiện tối ưu dạng điểm yên cho bài toán tối ưu nửa vô hạn với ràng buộc biến mất
Lagrange duality and saddle point optimality conditions for semi-infinite programming with vanishing constraints
Khoa học (Đại học Cần Thơ)
2022
CĐKHTN
90-97
1859-2333
TTKHCNQG, CVv 403
- [1] Vaz, A. I. F., Fernandes, E. M., & Gomes, M. P. S. (2004), Robot trajectory planning with semiinfinite programming,European Journal of Operational Research, 153(3), 607–617. https://doi.org/10.1016/S0377-2217(03)00266-2
- [2] Tung, L. T. (2020), Karush–Kuhn–Tucker optimality conditions and duality for the semiinfinite programming problems with vanishing constraints,Journal of Nonlinear and Variational Analysis, 4(3), 319-336. https://doi.org/10.23952/jnva.4.2020.3.01
- [3] Tung, L. T. (2020), Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semiinfinite programming problems with vanishing constraints,Annals of Operations Research. https://doi.org/10.1007/s10479-020-03742-1
- [4] Tung, L. T. (2020), Karush–Kuhn–Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions,Journal of Applied Mathematics and Computing, 62, 67–91. https://doi.org/10.1007/s12190-019-01274-x
- [5] Tung, L. T. (2018), Strong Karush–Kuhn–Tucker optimality conditions for multiobjective semiinfinite programming via tangential subdifferential,RAIRO - Operations Research, 52(4-5), 1019– 1041. https://doi.org/10.1051/ro/2018020
- [6] Singh, K. V. K., Maurya, J. K., & Mishra, S. K. (2019), Lagrange duality and saddle point optimality conditions for semi-infinite mathematical programming problems with equilibrium constraints,Yugoslav Journal of Operations Research, 29(4), 433–448. https://doi.org/10.2298/YJOR181215014S
- [7] Singh, Y., Pandey, Y., & Mishra, S. K. (2017), Saddle point optimality criteria for mathematical programming problems with equilibrium constraints,Operations Research Letters, 45(3), 254–258. https://doi.org/10.1016/j.orl.2017.03.009
- [8] Pandey, Y., & Mishra, S. (2016), On strong KKT type sufficient optimality conditions for nonsmooth multiobjective semi-infinite mathematical programming problems with equilibrium constraints,Operations Research Letters, 44(1), 148–151. https://doi.org/10.1016/j.orl.2015.12.007
- [9] Mishra, S. K., Singh, V. & Laha, V. (2016), On duality for mathematical programs with vanishing constraints,Annals of Operations Research, 243(1-2), 249–272. https://doi.org/10.1007/s10479-015-1814-8
- [10] Kanzi, N. (2015), On strong KKT optimality conditions for multiobjective semi-infinite programming problems with Lipschitzian data,Optimization Letters, 9(6), 1121–1129. https://doi.org/10.1007/s11590-014-0801-3
- [11] Kabgani, A., & Soleimani-damaneh, M. (2018), C-haracterization of (weakly/ properly/ robust) efficient solutions in nonsmooth semi-infinite multiobjective optimization using convexificators,Optimization 67(2), 217–235. https://doi.org/10.1080/02331934.2017.1393675
- [12] Guu, S. M., Singh, Y., & Mishra, S. K. (2017), On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints,Journal of Inequalities and Applications, 2017, 1–9. https://doi.org/10.1186/s13660-017-1558-x
- [13] Ghate, A. (2020), Inverse optimization in semiinfinite linear programs,Operations Research Letters, 48(3), 278–285. https://doi.org/10.1016/j.orl.2020.02.007
- [14] Chuong, T. D., & Jeyakumar, V. (2017), Convergent hierarchy of SDP relaxations for a class of semiinfinite convex polynomial programs and applications,Applied Mathematics and Computation, 315, 381–399. https://doi.org/10.1016/j.amc.2017.07.076
- [15] Caristi, G., & Ferrara, M. (2017), Necessary conditions for nonsmooth multiobjective semiinfinite problems using Michel–Penot subdifferential,Decisions in Economics and Finance, 40(1-2), 103–113. https://doi.org/10.1007/s10203-017-0186-8
- [16] Achtziger, W., & Kanzow, C. (2008), Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications,Mathematical Programming, 114(1), 69–99. https://doi.org/10.1007/s10107-006-0083-3
