Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  25,576,573
  • Công bố khoa học và công nghệ Việt Nam

61

Kỹ thuật quá trình hóa học nói chung

BB

Nghiên cứu tổng quan về quá trình polymer hóa và những yếu tố chính ảnh hưởng đến tính chất cơ học của đất laterit gia cố bằng geopolymer

A typical review on geopolymerization and influential factors affecting mechanical properties of laterite soils stabilized with geopolymer

Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên

2023

10

58 - 72

1859-2171

Tại Việt Nam, trong những năm gần đây, hoạt động nghiên cứu, ứng dụng geopolymer để cải thiện tính chất cơ lý của đất nhận được khá nhiều sự quan tâm, trong đó có đất tàn tích (đất laterit). Tuy nhiên, các nghiên cứu tổng quát về quá trình polymer hóa cũng như các yếu tố ảnh hưởng đến tính chất cơ lý của đất laterit còn tương đối hạn chế. Bài báo trình bày kết quả nghiên cứu phân tích tổng quát về cơ chế polymer hóa, các yếu tố chính ảnh hưởng tính chất cơ học của vật liệu geopolymer. Cụ thể, loại hay nguồn gốc vật liệu AluminoSilicate và môi trường kiềm đóng vai trò quan trọng trong quá trình polymer hóa. Đối với việc cải thiện tính chất cơ lý của các loại đất có hàm lượng bụi lớn và rất dẻo thì ngoài việc sử dụng nồng độ dung dịch kiềm NaOH phù hợp cũng cần phải xem xét đến các yếu tố khác, như hàm lượng vật liệu AluminoSilicate, tỷ số Si/Al... Bên cạnh đó, cường độ vật liệu sử dụng geopolymer nói chung đạt giá trị tối ưu khi tỷ số Si/Al = (1,85¸2,0); tuy nhiên, một số nghiên cứu cho thấy cường độ tăng khi Si/Al ³ 2,0; do đó, cần có thêm các nghiên cứu để đánh giá đầy đủ và rõ ràng hơn về ảnh hưởng của tỷ số Si/Al.

In Vietnam, in recent years, research and application activities of geopolymer to improve the physical and mechanical properties of soil have increased, including weathered soils (laterite soils). However, critical studies on the polymerization process as well as the primary factors affecting the physico-mechanical properties of laterite soil are relatively limited. This paper presents a critical review on the polymerization mechanism, the influential factors affecting the mechanical properties of geopolymer materials. Specifically, the type or origin of AluminoSilicate materials and the alkaline environment play a vital role in the polymerization process. For the improvement of the physical and mechanical properties of soils with high clay/silt content and plasticity, beside using the appropriate sodium hydroxide (NaOH) concentration, other factors need to be considered, such as AluminoSilicate material content, Si/Al ratio. Besides, the strength of materials using geopolymer generally reaches the optimal value as the ratio Si/Al = (1.85¸2.0); yet, there are still studies showing that the strength increases even when the ratio Si/Al ³ 2.0; therefore, more studies need to be conducted to evaluate the influence of Si/Al ratio more clearly.

TTKHCNQG, CTv 178

  • [1] B. Adhikari, M. J. Khattak, S. Adhikari (2021), Mechanical and durability characteristics of flyash-based soil-geopolymer mixtures for pavement base and subbase layers,International Journal of Pavement Engineering
  • [2] J. Davidovits (1989), Geopolymers and geopolymeric materials,Journal of Thermal Analysis
  • [3] I. Phummiphan, S. Horpibulsuk, P. Sukmak, A. Chinkulkijniwat, A. Arulrajah, S.-L. Shen (2016), Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer,Road Materials and Pavement Design
  • [4] S. Hanjitsuwan, S. Hunpratub, P. Thongbai, S. Maensiri, V. Sata, P. Chindaprasirt (2014), Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste,Cement and Concrete Composites
  • [5] U. Rattanasak, P. Chindaprasirt (2009), Influence of NaOH solution on the synthesis of fly ash geopolymer,Minerals Engineering
  • [6] K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, P. Chindaprasirt (2011), NaOH-activated ground fly ash geopolymer cured at ambient temperature,Fuel
  • [7] S. Adhikari, M. J. Khattak, B. Adhikari (2020), Mechanical characteristics of Soil-RAP-Geopolymer mixtures for road base and subbase layers,International Journal of Pavement Engineering
  • [8] J. N. Fekoua, C. R. Kaze, L. L. Duna, A. Ghazouni, I. M. Ndassa, E. Kamseu, S. Rossignol, C. Leonelli (2021), Effects of curing cycles on developing strength and microstructure of goethite-rich aluminosilicate (corroded laterite) based geopolymer composites,Materials Chemistry and Physics
  • [9] P. K. Sarker, S. Kelly, Z. Yao (2014), Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete,Materials & Design
  • [10] J. S. J. V. Deventer, J. L. Provis, P. Duxson, G. C. Lukey (2007), Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products,Journal of Hazardous Materials
  • [11] P. Duxson, J. L. Provis, G. C. Lukey, S. W. Mallicoat, W. M. Kriven, J. S. Van Deventer (2005), Understanding the relationship between geopolymer composition, microstructure and mechanical properties,Colloids and Surfaces A: Physicochemical and Engineering Aspects
  • [12] G. Davis, C. Montes, S. Eklund (2017), Preparation of lunar regolith based geopolymer cement under heat and vacuum,Advances in Space Research
  • [13] B. Singhi, A. I. Laskar, M. A. Ahmed (2016), Investigation on soil–geopolymer with slag, fly ash and their blending,Arabian Journal for Science and Engineering
  • [14] S. Thokchom, K. K. Mandal, S. Ghosh (2012), Effect of Si/Al ratio on performance of fly ash geopolymers at elevated temperature,Arabian Journal for Science and Engineering
  • [15] H. Xu, J. S. Van Deventer (2003), Effect of source materials on geopolymerization,Industrial & Engineering Chemistry Research
  • [16] M. Hoy, R. Rachan, S. Horpibulsuk, A. Arulrajah, M. Mirzababaei (2017), Effect of wetting–drying cycles on compressive strength and microstructure of recycled asphalt pavement–Fly ash geopolymer,Construction and Building Materials
  • [17] Z. Liu, C. S. Cai, F. Liu, F. Fan (2016), Feasibility study of loess stabilization with fly ash–based geopolymer,Journal of Materials in Civil Engineering
  • [18] L. K. Davidson, T. Demirel, R. L. Handy (1965), Soil pulveration and lime migration in soil-lime stabilization,Highway Research Record
  • [19] F. S. Rostler, W. M. Kunkel (1964), Soil stabilization,Industrial & Engineering Chemistry
  • [20] J. R. Prusinski, S. Bhattacharja (1999), Effectiveness of Portland cement and lime in stabilizing clay soils,Transportation Research Record
  • [21] P. Sargent (2015), The development of alkali-activated mixtures for soil stabilisation,Handbook of Alkali-Activated Cements, Mortars and Concretes
  • [22] D. T. Bergado, L. R. Anderson, N. Miura, A. S. Balasubramaniam (1996), Soft ground improvement in lowland and other environments,
  • [23] C. D. F. Rogers, S. Glendinning (1996), Modification of clay soils using lime,Lime Stabilisation: Proceedings of the seminar
  • [24] A. Palomo, M. W. Grutzeck, M. T. Blanco (1999), Alkali-activated fly ashes: A cement for the future,Cement and Concrete Research
  • [25] D. Parthiban, D.S. Vijayan, E. Koda, M.D. Vaverkova, K. Piechowicz, P. Osinski, D. B. Van (2022), Role of Industrial based Precursors in the Stabilization of weak soils with geopolymer - A Review,Case Studies in Construction Materials
  • [26] J. Davidovitsa, L. Huamanb, R. Davidovitsa (2019), Tiahuanaco monuments (Tiwanaku/Pumapunku) in Bolivia are made of geopolymer artificial stones created 1400 years ago,Conference: Geopolymer Camp
  • [27] M. Vafaei, A. Allahverdi (2017), High strength geopolymer binder based on waste-glass powder,Advanced Powder Technology
  • [28] Y. G. Adewuyi (2021), Recent advances in fly-ash-based geopolymers: potential on the utilization for sustainable environmental remediation,ACS Omega
  • [29] I. Luhar, S. Luhar, M. Abdullah, M. Nabiałek, A. Sandu, J. Szmidla, A. Jurczyńska, R. Razak, I. Aziz, N. Jamil, L. Deraman (2021), Assessment of the Suitability of Ceramic Waste in Geopolymer Composites: An Appraisal,Materials
  • [30] N. H. Luong (2015), A research on the use of fly ash as reinforcing filler element for rubber and rubber blend materials,
  • [31] M. Torres-Carrasco, F. Puertas (2015), Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation,Journal of Cleaner Production
  • [32] H. T. Nguyen, P. T. Dang (2021), Fly Ash-Based Geopolymer: Green Material in Carbon-Constrained Society,Solid State Phenomena
  • [33] H.-B. Le, Q.-B. Bui, L. Tang (2021), Geopolymer recycled aggregate concrete: from experiments to empirical models,Materials
  • [34] J. Davidovits (1994), Properties of geopolymer cements,First International Conference on Alkaline Cements and Concretes
  • [35] E. Chong, M. King, K. E. Marak, M. A. Freedman (2019), The effect of crystallinity and crystal structure on the immersion freezing of alumina,The Journal of Physical Chemistry A
  • [36] C. Hengels, H. Collado, T. Droguett, S. Sánchez, M. Vesely, P. Garrido, S. Palma (2021), Factors affecting the compressive strength of geopolymers: A review,Minerals
  • [37] K. C. Onyelowe, V. D. Bui, P. L. Dao, F. Onyelowe, C. Ikra, C. Ezugwu, A. B. Salahudeen, M. Maduabuchi, J. Obimba-Wogu, K. Ibe, L. Ihenna (2020), Evaluation of index and compaction properties of lateritic soils treated with quarry dust based geopolymer cement for subgrade purpose,Epitoanyag - Journal of Silicate Based and Composite Materials
  • [38] National Institute for Soils and Fertilizers (2002), The basic information of main soil units of Vietnam,
  • [39] M. Pinard, D. F. Netterberg, D. P. Paige-Green (2014), Review of specifications for the use of laterite in road pavements,Final Report of Contract AFCAP/GEN/124
  • [40] C. A. Oyelami, J. L. Van Rooy (2016), A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: A geological perspective,Journal of African Earth Sciences
  • [41] D. A. Alao (1983), Geology and engineering properties of laterites from Ilorin, Nigeria,Engineering Geology
  • [42] D. R. Biswal, U. C. Sahoo, S. R. Dash (2016), Characterization of granular lateritic soils as pavement material,Transportation Geotechnics
  • [43] British Standards Institution (1978), Code of practice for structural use of masonry, Part 1: Unreinforced masonry,BS:5628-1978
  • [44] T.-P. Ngo, Q.-B. Bui, V. T.-A. Phan, H.-B. Tran (2022), Durability of geopolymer stabilised compacted earth exposed to wetting–drying cycles at different conditions of pH and salt,Construction and Building Materials
  • [45] Q. N. Kieu, A. D. Nguyen (2015), Geopolymer binders in production of non-fired construction materials,Proceeding - 70th anniversary of Geology and Minerals sector of Vietnam
  • [46] V. T. Tran (2021), Research on clay mud structure reinforcement to improvement soft soil base on geopolymer technology,
  • [47] H. S. Trinh (2020), An experimental research on assessment of foremost properties of fly ash-based geopolymer using steel slag aggregate in road construction in Vietnam,
  • [48] V. H. Tran (2017), Investigation in compositions, properties of fly ash based geopolymer concrete and application to bridge - tunnel structures,
  • [49] T. B. Nguyen, T. T. Nguyen, H. Q. Dinh (2020), In situ test results on the application of Alkali-activated concrete using fly ash and blast furnace slag,Journal of Water Resource and Technology
  • [50] J. L. Provis, J. S. Van Deventer (2013), Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM,
  • [51] J. L. Provis (2018), Alkali-activated materials,Cement and Concrete Research
  • [52] J. Davidovits (2013), Geopolymer cement a review,Geopolymer Science and Technics
  • [53] J.-L. Zheng, R. Zhang, H.-P. Yang (2009), Highway subgrade construction in expansive soil areas,Journal of Materials in Civil Engineering
  • [54] M. Arsyad, I. B. Mochtar, N. E. Mochtar, Y. F. Arifin (2020), Road embankment full-scale investigation on soft soil with geotextile stabilization,GEOMATE Journal
  • [55] I. Rapti, F. Lopez-Caballero, A. Modaressi-Farahmand-Razavi, A. Foucault, F. Voldoire (2018), Liquefaction analysis and damage evaluation of embankment-type structures,Acta Geotechnica
  • [56] J. H. Long, S. M. Olson, T. D. Stark, E. A. Samara (1998), Differential movement at embankment-bridge structure interface in Illinois,Transportation Research Record