Lọc theo danh mục
liên kết website
Lượt truy cập
- Công bố khoa học và công nghệ Việt Nam
2
Chế tạo máy động lực
Trần Văn Kế(1), Nguyễn Thị Hồng
Phân tích dao động riêng của dầm Nano cong FG nằm trên nền đàn hồi sử dụng phương pháp Rayleigh-Ritz
Free vibration analysis of fg curved nanobeam resting on elastic foundation using rayleigh-ritz method
Khoa học kỹ thuật Thủy lợi và Môi trường
2022
79
96-103
1859-3941
TTKHCNQG, CVt 64
- [1] N. Triantafyllidis and E. C. Aifantis, (1986), “A gradient approach to localization of deformation. I. Hyperelastic materials,”,J. Elast., vol. 16, no. 3, pp. 225–237, 1986
- [2] V. K. Tran, T. T. Tran, M. Van Phung, Q. H. Pham, and T. Nguyen-Thoi, (2020), “A Finite Element Formulation and Nonlocal Theory for the Static and Free Vibration Analysis of the Sandwich Functionally Graded Nanoplates Resting on Elastic Foundation,”,J. Nanomater., vol. 2020,
- [3] D. Shahsavari, B. Karami, H. R. Fahham, and L. Li, (2018), “On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory,”,Acta Mech., vol. 229, no. 11, pp. 4549– 4573, 2018
- [4] J. N. Reddy, C. W. Lim, and G. Zhang, (2015), “A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation,”,J. Mech. Phys. Solids, vol. 78, pp. 298–313, 2015
- [5] V. Y. Prinz, D. Grützmacher, A. Beyer, C. David, B. Ketterer, and E. Deckardt, (2001), “A new technique for fabricating three-dimensional micro- and nanostructures of various shapes,”,Nanotechnology, vol. 12, no. 4, pp. 399–402, 2001
- [6] N. D. Nguyen, T. K. Nguyen, H. T. Thai, and T. P. Vo, (2018), “A Ritz type solution with exponential trial functions for laminated composite beams based on the modified couple stress theory,”,Compos. Struct., vol. 191, pp. 154–167, 2018
- [7] Y. S. Li, P. Ma, and W. Wang, (2016), “Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory,”,J. Intell. Mater. Syst. Struct., vol. 27, no. 9, pp. 1139– 1149, 2016
- [8] S. K. Jena, S. Chakraverty, and F. Tornabene, (2019), “Buckling Behavior of Nanobeams Placed in Electromagnetic Field Using Shifted Chebyshev Polynomials-Based Rayleigh-Ritz Method,”,Nanomaterials , vol. 9, no. 9. 2019
- [9] M. Ganapathi and O. Polit, (2017), “Dynamic c-haracteristics of curved nanobeams using nonlocal higher-order curved beam theory,”,Phys. E Low-Dimensional Syst. Nanostructures, vol. 91, pp. 190–202, 2017
- [10] A. Eringen, and J. Wegner, (2003), Nonlocal Continuum Field Theories,,vol. 56, no. 2. 2003
- [11] S. Ebrahimi and M. R. Barati, (2016), “Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory,”,Appl. Phys. A Mater. Sci. Process., vol. 122, no. 9, 2016
- [12] S. Ebrahimi-Nejad, G. R. Shaghaghi, F. Miraskari, and M. Kheybari, (2019), “Size-dependent vibration in twodirectional functionally graded porous nanobeams under hygro-thermo-mechanical loading,”,Eur. Phys. J. Plus, vol. 134, no. 9, 2019
- [13] S. Dastjerdi, Y. Tadi Beni, and M. Malikan, (2020), “A comprehensive study on nonlinear hygro-thermomechanical analysis of thick functionally graded porous rotating disk based on two quasi-threedimensional theories,”,Mech. Based Des. Struct. Mach., 2020
- [14] M. Brzeziński and T. Biela, (2015), “Micro- and nanostructures of polylactide stereocomplexes and their biomedical applications,”,Polym. Int., vol. 64, no. 12, pp. 1667–1675, Dec. 2015
- [15] M. Azimi, S. S. Mirjavadi, N. Shafiei, and A. M. S. Hamouda, (2016), “Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam,”,Appl. Phys. A, vol. 123, no. 1, p. 104, 2016
- [16] E. O. Alzahrani, A. M. Zenkour, and M. SobhyE. O. Alzahrani, A. M. Zenkour, and M. Sobhy (2013), “Small scale effect on hygro-thermo-mechanical bending of nanoplates embedded in an elastic medium,”,Compos. Struct., vol. 105, pp. 163–172, 2013
