Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  25,616,097
  • Công bố khoa học và công nghệ Việt Nam

Kỹ thuật cơ khí nói chung

Lê Thế Hưng, Phạm Văn Bổng, Phạm Thị Thiều Thoa(1), Hoàng Tiến Dũng

Ứng dụng phương pháp mờ xám (FGRA) phân tích ảnh hưởng của chế độ cắt đến nhám bề mặt khi phay cao tốc

Application of fuzzy grey relational analysis (FGRA) method to analyze the effect of cutting conditions on surface roughening when high-speed milling

Khoa học và Công nghệ (Đại học Công nghiệp Hà Nội)

2021

6

74-89

1859-3585

Phân tích và đánh giá ảnh hưởng thông số chế độ cắt đến nhám bề mặt trong quá trình phay cao tốc trong điều kiện gia công khô và gia công ướt vật liệu thép SKD61 sau nhiệt luyện (đạt độ cứng 53 HRC). Ứng dụng phương pháp Taguchi xây dựng ma trận thực nghiệm, phương pháp quan hệ mờ xám (FGRA) và phương pháp phân tích phương sai (ANOVA) để phân tích mức độ ảnh hưởng của thông số chế độ cắt đến nhám bề mặt khi phay khô và phay ướt. Kết quả độ nhám bề mặt khi phay ướt và phay khô của ba yếu tố (chiều sâu cắt (t), bước tiến dao (S), vận tốc cắt (v)) tương ứng là 0,7527; 0,7869; 0,6302 và 0,8167, 0,7199; 0,6040. Quá trình phay cao tốc vật liệu có độcứng cao khi phay ướt bước tiến dao có ảnh hưởng nhiều nhất tới nhám bề mặt, trong khi đó với quá trình phay khô chiều sâu cắt có ảnh hưởng nhiều nhất tới nhám bề mặt, trong cả hai phương pháp phay khô và phay ướt đều cho thấy vận tốc cắt có ảnh hưởng nhỏ nhất tới nhám bề mặt.

The paper analyses and evaluates the effect of cutting parameters on surface roughness in the milling process of SKD61 steel materials after heat treatment (hardness of 53 HRC). Application of the Taguchi method to build experimental matrix, Fuzzy Grey Relation Analysis method (FGRA) and Analysis of Variance (ANOVA) method to analyze the influence of cutting conditions on surface roughness when milling dry and wet milling. The surface roughness results in wet and dry milling of three factors (depth of cut (t), feed rate (S), cutting speed (v)) are 0.7527, respectively; 0.7869; 0.6302 and 0.8167, 0.7199; 0.6040. High-speed milling process of materials with high hardness when wet milling the feed rate has the most influence on the surface roughness. While in dry milling, the depth of cut has the most impact on the surface roughness. Both dry and wet milling methods show that cutting speed has the slightest effect on surface roughness

TTKHCNQG, CVt 70

  • [1] Younas M., Jaffery SHI., Khan M., Khan MA., Ahmad R., Mubashar A., Ali L (2019), Multi-objective optimization for sustainable turning Ti6Al4V alloy using grey relational analysis (GRA) based on analytic hierarchy process (AHP),The International Journal of Advanced Manufacturing Technology 105 (1):1175- 1188. doi:10.1007/s00170-019-04299-5
  • [2] Abhang LB., Hameedullah M. (2012), Determination of optimum parameters for multi-performance c-haracteristics in turning by using grey relational analysis.,The International Journal of Advanced Manufacturing Technology 63 (1-4):13-24. doi:10.1007/s00170-011-3857-6.
  • [3] Li G-D., Yamaguchi D., Nagai M. (2007), A grey-based rough decisionmaking approach to supplier se-lection.,The International Journal of Advanced Manufacturing Technology 36 (9-10):1032-1040. doi:10.1007/s00170-006-0910-y
  • [4] Singh S. (2012), Optimization of machining c-haracteristics in electric disc-harge machining of 6061Al/Al2O3p/20P composites by grey relational analysis.,The International Journal of Advanced Manufacturing Technology 63 (9- 12):1191-1202. doi:10.1007/s00170-012-3984-8
  • [5] Kasman Ş. (2013), Multi-response optimization using the Taguchi-based grey relational analysis: a case study for dissimilar friction stir butt welding of AA6082-T6/AA5754-H111.,The International Journal of Advanced Manufacturing Technology 68 (1-4):795-804. doi:10.1007/s00170-012-4720-0
  • [6] Dung H. T., Thoa P. T. T., Linh N. T., Cu Q. N. (2020), Application of the taguchi method to investigate the effects cutting parameters and helix angle on cutting force when milling aluminum alloy Al6061 by a solid end mill tool.,Journal of Science and Technology, Hanoi University of Industry, Vol.56, No. 1, 59-65.
  • [7] Kundor N. F., Awang N. W., Berahim N. (2016), Tool wear and surface roughness in machining AISI D2 tool steel,Indian Journal of Science and Technology,9(18), 20-25.
  • [8] Jeyakumar S., Marimuthu K., Ramachandran T. (2013), Prediction of cutting force, tool wear and surface roughness of Al6061/SiC composite for end milling operations using RSM.,Journal of Mechanical Science and Technology,27(9), 2813-2822
  • [9] Coppini N. L., Diniz A. E., Lacerda F. S., Bonandi M., Baptista E. A. (2018), Internal turning of sintered carbide parts: tool wear and surface roughness evaluation,Journal of the Brazilian Society of Mechanical Sciences and Engineering,40(4), 216.
  • [10] Wang R., Wang B., Barber G. C., Gu J., Schall J. D (2019), Models for prediction of surface roughness in a face milling process using triangular in-serts,Lubricants,7(1), 9
  • [11] Nguyen P.H., Banh L.T., Bui V.D., Hoang D.T. (2018), Multi-response optimization of process parameters for powder mixed electro-disc-harge machining according to the surface roughness and surface micro-hardness using TaguchiTOPSIS,Int. J. Data Netw. Sci. 02, 109–119.
  • [12] Le Hong Ky, Nhu Tung Nguyen, Do Duc Trung, Hoang Tien Dung,Le Hoang Anh (2020), Modeling the surface roughness in face-end milling process by using general in-sert at stable cutting conditions,Modern Physics Letters B, ISSN (print): 0217-9849 | ISSN (online): 1793-6640.
  • [13] Molla Ramezani N., Rasti A., Sadeghi M. H., Jabbaripour B., Rezaei Hajideh M. (2016), Experimental study of tool wear and surface roughness on high speed helical milling in D2 steel,Modares Mechanical Engineering,15(20), 198-202.
  • [14] Li Y., Zheng G., Zhang X., Cheng X., Yang X., Xu R. (2019), Cutting force, tool wear and surface roughness in high-speed milling of high-strength steel with coated tools.,Journal of Mechanical Science and Technology,33(11), 5393-5398.
  • [15] Kilickap E., Yardimeden A., Çelik Y. H. (2017), Mathematical modelling and optimization of cutting force, tool wear and surface roughness by using artificial neural network and response surface methodology in milling of Ti6242S,Applied Sciences,7(10), 1064.
  • [16] Gürgen S., Tali D., Kushan, M. C. (2019), An Investigation on Surface Roughness and Tool Wear in Turning Operation of Inconel 718.,Journal of Aerospace Technology and Management,11.
  • [17] Eckstein M., Vrabeľ M., Maňková I. (2016), Tool wear and surface roughness evolution in hole making process of Inconel 718.,In Materials Science Forum (Vol. 862, pp. 11-17). Trans Tech Publications Ltd.
  • [18] Trung D.D., Van Thien N., Dung H.T. (2017), Predictive surface roughness of workpiece in surface grinding.,Am. J. Mater. Res. 4, 37–41.
  • [19] Tran T.H., et al. (2020), A Study on Calculation of Optimum Exchanged Grinding Wheel Diameter when Surface GrindingStainless Steel.,Materials Science Forum. 977: pp.3-11. DOI: 10.4028/www.scientific.net/msf.977.3
  • [20] Le Xuan Hung, Le Hong Ky, Tran Thi Hong, Hoang Tien Dung, Vu Thi Lien, Luu Anh Tung, Banh Tien Long, Vu Ngoc Pi (2019), A study on cost optimization of internal cylindrical grinding.,International Journal of Mechanical Engineering and Technology (IJMET), 10(1) 414–423.
  • [21] Nguyen Thanh Binh, Nguyen Huy Ninh, Hoang Tien Dung (2015), An investigation about the effect of cutting conditions to surfaces roughness when high-speed milling on the 5-axis machine UCP600,Vietnam Journal ofScience and Technology, 53 (5), tr. 671-678.
  • [22] Tien Dung Hoang, Nhu Tung Nguyen, Duc Quy Tran, Van Thien Nguyen (2019), Cutting Forces and Surface Roughness in Face-Milling of SKD61 Hard Steel,Strojniški vestnik - Journal of Mechanical Engineering 65, Vol. 6, pp. 375-385.