Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  30,516,408
  • Công bố khoa học và công nghệ Việt Nam

Khoa học kỹ thuật và công nghệ

BB

Trần Anh Sơn(2), Đoàn Đình Quân, Phạm Anh Vũ(1), Vũ Hồng Sơn, Hoàng Văn Hán, Phạm Thế Tân, Chu Văn Tuấn*

Nghiên cứu ảnh hưởng của tốc độ biến dạng đến các tính chất chịu kéo của hợp kim Cu50Ni50 đa tinh thể sử dụng phương pháp mô phỏng động lực phân tử

Studying the effect of strain rate on tensile properties of nanocrystalline Cu50Ni50 alloy using molecular dynamics simulation method

Tạp chí Khoa học và Công nghệ Việt Nam - B

2024

3B

55

Trong bài báo này, ảnh hưởng của các tốc độ biến dạng khác nhau đến tính chất chịu kéo của hợp kim Cu50Ni50 đa tinh thể được nghiên cứu bằng phương pháp mô phỏng động lực phân tử - một trong các phương pháp mô phỏng được sử dụng khá rộng rãi trong lĩnh vực vật liệu nano hiện nay. Phương pháp Voronoi được áp dụng để thiết lập cấu trúc đa tinh thể và phần mềm ATOMSK được sử dụng để tạo mẫu thử kéo hợp kim Cu50Ni50 đa tinh thể. Mối quan hệ giữa ứng suất - biến dạng, sự biến đổi pha tinh thể, hiện tượng sai lệch mạng tinh thể, sự phân bố ứng suất cắt và ứng suất von Mises được đánh giá...

In this paper, the effect of different strain rates on the tensile properties of nanocrystalline Cu50Ni50 alloy was investigated using the molecular dynamics simulation method, one of the simulation methods widely used in the field of nanomaterials today. The Voronoi method was applied to establish the nanocrystalline structure, and ATOMSK software was used to create the tensile test specimens of the polycrystalline Cu50Ni50 alloy. The stress-strain relationship,phase transformations, lattice dislocations, shear strain and von Mises stress distributions were evaluated...

  • [1] D.Q. Doan, T.H. Fang, T.H. Chen (2020), Effects of grain and twin boundary on friction and contact c-haracteristics of CuZrAl nanocrystallines,Applied Surface Science
  • [2] A.S. Tran, T.H. Fang, J.W. Hsiao (2019), Incipient plasticity and voids nucleation of nanocrystalline gold nanofilms using molecular dynamics simulation,Current Applied Physics
  • [3] G.P. Potirniche, M.F. Horstemeyer, B. Jelinek, et al. (2005), Fatigue damage in nickel and copper single crystals at nanoscale,International Journal of Fatigue
  • [4] F. Hussain, M. Imran, M. Rashid, et al. (2014), Molecular dynamics simulation of mechanical c-haracteristics of CuZr bulk metallic glasses using uni-axial tensile loading technique,Physica Scripta
  • [5] A.S. Tran (2020), Phase transformation and interface fracture of Cu/Ta multilayers: A molecular dynamics study,Engineering Fracture Mechanics
  • [6] B. Onat, S. Durukanoğlu (2013), An optimized interatomic potential for Cu-Ni alloys with the embedded-atom method,Journal of Physics: Condensed Matter
  • [7] B.F. Dale, S.J. Plimpton, M.S. Shephard (2010), Software components for parallel multiscale simulation: An example with LAMMPS,Engineering with Computers
  • [8] F. Aurenhammer (1991), Voronoi diagrams – A survey of a fundamental geometric data structure,ACM Computing Surveys (CSUR)
  • [9] P.S. Harikumar, T.K. Hridya (2021), Application of CuNi bimetallic nanoparticle as an adsorbent for the removal of heavy metals f-rom aqueous solution,Int. J. Environ. Anal. Chem.
  • [10] B. Han, C. Zhang, M. Shi (2022), Molecular dynamics simulations of nanoindentation of CuNi alloy,International Journal of Applied Mechanics
  • [11] N. Ma, D.Y. Cheung, J.T. Butcher (2022), Incorporating nanocrystalline cellulose into a multifunctional hydrogel for heart valve tissue engineering applications,Journal of Biomedical Materials Research Part A
  • [12] A.K. Kushwaha, M. John, M. Misra, et al. (2021), Nanocrystalline materials: Synthesis, c-haracterization, properties, and applications,Crystals
  • [13] F. Li, T. Liu, J.Y. Zhang, et al. (2019), Amorphous-nanocrystalline alloys: Fabrication, properties, and applications,Materials Today Advances
  • [14] H. Gleiter (1991), Nanocrystalline materials,Advanced Structural and Functional Materials
  • [15] K. Binder, J. Horbach, W. Kob, et al. (2004), Molecular dynamics simulations,Journal of Physics: Condensed Matter
  • [16] A.S. Tran (2021), Deformation mechanism and tensile properties of nanocrystalline CoCrCuFeNi high-entropy alloy: A molecular dynamics simulation study,Physica Scripta
  • [17] C. Huang, X. Peng, B. Yang, et al. (2018), Effects of strain rate and annealing temperature on tensile properties of nanocrystalline diamond,Carbon
  • [18] D. Wei, X. Li, W. Heng, et al. (2019), Novel Co-rich high entropy alloys with superior tensile properties,Materials Research Letters