



- Công bố khoa học và công nghệ Việt Nam
Kỹ thuật hoá hữu cơ
Lê Viết Lâm Anh, Lưu Thị Xuân Thi, Lê Tiến Khoa(1)
Tổng hợp xúc tác dị thể manganese oxide ứng dụng cho phản ứng oxy hóa p-hydroxybenzyl alcohol thành p-hydroxybenzaldehyde trong không khí
Phát triển Khoa học và Công nghệ: Khoa học Tự nhiên (ĐHQG TP. Hồ Chí Minh)
2021
1
942-948
2588-106X
TTKHCNQG, CTv 149
- [1] Rahaman H; Laha RM; Maiti DK; Ghosh SK. (2015), Fabrication of Mn2O3 nanorods: an efficient catalyst for se-lective transformation of alcohols to aldehydes,RSC Adv. 2015;5:33923– 33929. Available f-rom: https://doi.org/10.1039/C5RA02504D
- [2] Ashoka S; Chithaiah P; Tharamani CN; Chandrappa GT. (2010), Synthesis and c-haracterisation of microstructural α-Mn2O3 materials,J Exp Nanosci. 2010;5:285–293. Available f-rom: https: //doi.org/10.1080/17458080903495003
- [3] Parikh SJ; Chorover J. (2005), FTIR spectroscopic study of biogenic Mn-oxide formation by Pseudomonas putida GB-1,J Geomicrobiol. 2005;22:207–218. Available f-rom: https://doi.org/10. 1080/01490450590947724
- [4] Yeung KL; Yau ST; Maira AJ; Coronado JM; Soria J; Yue PL. (2003), The influence of surface properties on the photocatalytic activity of nanostructured TiO2,J Catal. 2003;219:107–116. Available f-rom: https://doi.org/10.1016/S0021-9517(03)00187-8
- [5] (), Available f-rom: https://sdbs.db. aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi,
- [6] Hu Z; Zhao Y; Liu J; Wang J; Zhang B; Xiang X. (), Ultrafine MnO2 nanoparticles decorated on graphene oxide as a highly efficient and recyclable catalyst for aerobic oxidation of benzyl alcohol,J Colloid Interface Sci. 2016;483:26–33. PMID: 27544446. Available f-rom: https://doi.org/10.1016/j.jcis.2016. 08.010
- [7] Morales MR; Barbero BP; Cadús LE. (2008), Evaluation and c-haracterization of Mn-Cu mixed oxide catalysts for ethanol total oxidation: Influence of copper content,Fuel. 2008;87:1177–1186. Available f-rom: https://doi.org/10.1016/j.fuel.2007.07.015
- [8] Wang F; Yang G; Zhang W; Wu W; Xu J. (2003), Copper and manganese: two concordant partners in the catalytic oxideation of p-cresol to p-hydroxybenzaldehyde,Chem Commun. 2003;10:1172–1173. PMID: 12778720. Available f-rom: https://doi.org/10.1039/b300610g
- [9] Rode CV; Sonar MV; Nadgeri JM; Chaudhari RV. (2004), Se-lective synthesis of p-hydroxybenzaldehyde by liquid-phase catalytic oxideation of p-cresol,Org Proc Res Dev. 2004;8:873–878. Available f-rom: https://doi.org/10.1021/op0498619
- [10] Lou JD; Xu ZN. (2002), Se-lective solvent-free oxidation of alcohols with potassium dichromate,Tetrahedron Lett. 2002;43:8843– 8844. Available f-rom: https://doi.org/10.1016/S0040-4039(02) 02234-7
- [11] Zhang Q; Liu Y; Li G; Li J. (2011), Preparation of phydroxybenzaldehyde by hydrolysis of diazonium salts using rotating packed bed,Chin J Chem Eng. 2011;19:140– 144. Available f-rom: https://doi.org/10.1016/S1004-9541(09) 60190-7
- [12] Yi W; Cao R; Peng W; Wen H; Yan Q; Zhou B; Ma L; Song H. (2010), Synthesis and biological evaluation of novel 4- hydroxybenzaldehyde derivatives as tyrosinase inhibitors,Eur J Med Chem. 2010;45:639–646. PMID: 19932528. Available f-rom: https://doi.org/10.1016/j.ejmech.2009.11.007.
- [13] Ha JH; Lee DU; Lee JT; Kim JS; Yong CS; Kim JA; Ha JS; Huh K. (2000), 4-hydroxybenzaldehyde f-rom Gastrodia elata B1. is active in the antioxideation and GABAergic neuromodulation of the rat brain,J Ethnopharmacol. 2000;73:329–333. Available f-rom: https://doi.org/10.1016/S0378-8741(00)00313-5
- [14] Gong JS; Ma WP; Pu JX; Xu SG; Zheng SQ; Xiao CJ. (2006), Production of gastrodin through biotransformation of phydroxybenzaldehyde using cell suspension cultures of Datura tatula L.,Chin J Biotechnol. 2006;22:800–805. Available f-rom: https://doi.org/10.1016/S1872-2075(06)60056-3
- [15] Barton B; Logie CG; Schoonees BM; Zeelie B. (2005), Practical process for the air oxidation of cresols: part a. mechanistic investigations,Org Process Res Dev. 2005;9:62–69. Available f-rom: https://doi.org/10.1021/op049845b