



- Công bố khoa học và công nghệ Việt Nam
Nguyễn Văn Quang, Lê Thị Diễm Hằng, Phan Thị Kim Loan, Trần Mạnh Trung, Nguyễn Tư, Tống Thị Hảo Tâm(1), Lê Tiến Hà, Đào Xuân Việt, Phạm Thành Huy, Đỗ Quang Trung(2)
SINGLE-PHASED WARM WHITE-LIGHT-EMITTING ZnO:Al PHOSPHOR FOR SOLID-STATE LIGHTING APPLICATIONS
BỘT HUỲNH QUANG ĐƠN PHA PHÁT XẠ ÁNH SÁNG TRẮNG ẤM ZnO:Al ỨNG DỤNG TRONG CÔNG NGHỆ CHIẾU SÁNG RẮN
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
2019
11
Bột huỳnh quang ZnO pha tạp Al3+ được chế tạo thành công bằng phương pháp khuếch tán bề mặt. Kết quả nghiên cứu cấu trúc tinh thể cho thấy sau khi sử dụng năng lượng nhiệt khuếch tán ion Al3+ vào trong mạng nền đã làm cho các đỉnh nhiễu xạ của pha tinh thể lục giác của ZnO dịch chuyển về góc 2q lớn hơn làm cho thể tích ô cơ sở của bột ZnOAl giảm. Kết quả khảo sát phổ huỳnh quang theo nhiệt độ và nồng độ pha tạp ion Al3+ cho thấy rằng khi nhiệt độ tăng, nồng độ ion Al3+ khuếch tán vào trong mạng nền tăng và tạo ra nhiều sai hỏng trong mạng nền làm mở rộng vùng phát xạ trong vùng ánh sáng nhìn thấy về phía ánh sáng đỏ. Với mẫu bột ZnOAl 3%mol ủ ở nhiệt độ 800 °C trong 2 giờ cho phổ phát xạ có cường độ mạnh nhất tại bước sóng 542 nm và bán độ rộng đỉnh phổ ~ 186 nm bao chùm toàn bộ vùng ánh sáng nhìn thấy. Thử nghiệm chế tạo LED sử dụng bột ZnOAl phủ lên chip UV-LED cho phát xạ ánh sáng trắng ấm với nhiệt độ màu T = 4067 K và hệ số trả màu cao CRI = 87. Các kết quả nghiên cứu nhận được cho thấy bột huỳnh quang ZnOAl có tiềm năng ứng dụng trong chế tạo điốt phát quang ánh sáng trắng.
Al-doped ZnO powder was successfully fabricated by a surface diffusion method. The c-haracterization of the crystal structure shows that the diffraction peaks of the hexagonal crystal phase of ZnO shifted to a larger angle of 2q, following by the decrease of cell volume of ZnOAl powder after using the thermal energy to diffuse Al3+ ions into the host lattice. The photoluminescence spectra of obtained products showed that when the temperature increases, a higher concentration of Al3+ ion considerably diffuses into the ZnO host lattice and cre-ates many defects following by a red shift of emission band in the visible region. By optimizing the synthesis condition, the PL of ZnOAl (3%mol) sample annealed at 800 ° C for 2 hours shows the highest emission intensity peak at 542 nm with a full width at half maximum (FWHM) bandwidth of ~ 186 nm, covering the whole visible region. After coating, ZnOAl phosphor on a UV-LED chip, the as-received LED exhibits a warm white light emitting with the correlated color temperature (CCT) of 4067 K and a high color rendering index (CRI) of 87. Therefore, ZnOAl phosphors show a great potential to be used in the manufacture of white light-emitting diodes.
- [1] A. Chelouche, T. Touam, D. Djouadi, and A. Aksas (2014), Synthesis and c-haracterizations of new morphological ZnO and Ce-doped ZnO powders by sol-gel process,Optik (Stuttg)., Vol. 125, No. 19, pp. 5626–5629
- [2] X. Zhang et al. (2014), Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods,Sci. Rep., Vol. 4, pp. 4–11
- [3] C. Belkhaoui, N. Mzabi, H. Smaoui, and P. Daniel (2019), Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping,Results Phys., Vol. 12, pp. 1686–1696
- [4] J. Wang, R. Chen, L. Xiang, and S. Komarneni (2018), Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: A review,Ceram. Int., Vol. 44, No. 7, pp. 7357–7377
- [5] J. Li, X. Zhu, Q. Xie, and D. Yang (2019), Surface nanosheets evolution and enhanced photoluminescence properties of Al-doped ZnO films induced by excessive doping concentration,Ceram. Int., Vol. 45, No. 3, pp. 3871–3877
- [6] M. Isik and N. M. Gasanly (2018), Thermoluminescence properties of Al doped ZnO nanoparticles,Ceram. Int., Vol. 44, No. 12, pp. 13929–13933
- [7] P. S. Kolhe, A. B. Shinde, S. G. Kulkarni, N. Maiti, P. M. Koinkar, and K. M. Sonawane (2018), Gassensing performance of Al doped ZnO thin film for H2S detection,J. Alloys Compd., Vol. 748, pp. 6–11
- [8] L. Kong, X. Yin, F. Ye, Q. Li, L. Zhang, and L. Cheng (2013), Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl 2 O 4 nanograins,J. Phys. Chem. C, Vol. 117, No. 5, pp. 2135–2146
- [9] Y. J. Choi et al. (2013), Improved performance of organic light-emitting diodes fabricated on aldoped Zno anodes incorporating a homogeneous al-doped ZnO buffer layer grown by atomic layer deposition,ACS Appl. Mater. Interfaces, Vol. 5, No. 9, pp. 3650–3655
- [10] P. Jood et al. (2011), Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties,Nano Lett., Vol. 11, No. 10, pp. 4337– 4342
- [11] Y. Fangli, H. Peng, Y. Chunlei, H. Shulan, and L. Jinlin (2003), Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate,J. Mater. Chem., Vol. 13, No. 3, pp. 634–637
- [12] E. L. Foletto et al (2012), Synthesis of ZnAl 2O 4 nanoparticles by different routes and the effect of its pore size on the photocatalytic process,Microporous Mesoporous Mater., Vol. 163, pp. 29–33
- [13] Z. Lu, J. Zhou, A. Wang, N. Wang, and X Yang (2011), Synthesis of aluminium-doped ZnO nanocrystals with controllable morphology and enhanced electrical conductivity,J. Mater. Chem., Vol. 21, No. 12, pp. 4161–4167
- [14] J. Hua et al. (2018), Controlling electron transfer f-rom photoexcited quantum dots to Al doped ZnO nanoparticles with varied dopant concentration,Chem. Phys. Lett., Vol. 692, pp. 178–183
- [15] J. S. Tawale, A. Kumar, G. Swati, D. Haranath, S. J. Dhoble, and A. K. Srivastava (2018), Microstructural evolution and photoluminescence performanance of nickel and chromium doped ZnO nanostructures,Mater. Chem. Phys., Vol. 205, pp. 9–15
- [16] Y. Wang, X. Zhang, and C. Hou (2018), Facile synthesis of Al-doping 1D ZnO nanoneedles by co-precipitation method for efficient removal of methylene blue,Nano-Structures and NanoObjects, Vol. 16, pp. 250–257
- [17] M. ZHANG, X. hai LI, Z. xing WANG, Q. yang HU, and H. jun GUO (2010), Synthesis of Y 2 O 3 :Eu 3+ phosphors by surface diffusion and their photoluminescence properties,Trans. Nonferrous Met. Soc. China (English Ed.), Vol. 20, No. 1, pp. 115–118
- [18] S. A. Dayeh, E. T. Yu, and D. Wang (2009), Surface diffusion and substrate-nanowire adatom exchange in inas nanowire growth,Nano Lett., Vol. 9, No. 5, pp. 1967–1972
- [19] N. Bao et al. (2016), Construction of order mesoporous (Eu-La)/ZnO composite material and its luminescent c-haracters,J. Lumin., Vol. 177, pp. 409–415
- [20] T. Voss and S. R. Waldvogel (2017), Hybrid LEDs based on ZnO nanowire structures,Mater. Sci. Semicond. Process., Vol. 69, No. August, pp. 52– 56
- [21] K. M. Sandeep, S. Bhat, and S. M. Dharmaprakash (2017), Structural, optical, and LED c-haracteristics of ZnO and Al doped ZnO thin films,J. Phys. Chem. Solids, Vol. 104, pp. 36– 44
- [22] N. Srinatha, P. Raghu, H. M. Mahesh, and B. Angadi (2017), Spin-coated Al-doped ZnO thin films for optical applications: Structural, micro-structural, optical and luminescence studies,J. Alloys Compd., Vol. 722, pp. 888–895
- [23] O. Kalu, J. A. Duarte Moller, and A. Reyes Rojas (2019), Structural and optical properties of cadmium magnesium zinc oxide (CdMgZnO) nanoparticles synthesized by sol–gel method,Phys. Lett. Sect. A Gen. At. Solid State Phys., Vol. 383, No. 10, pp. 1037–1046
- [24] D. Wang et al. (2011), Oxygen-VacanciesMediated Energy Transfer in Red-Light-Emitting Eu-Doped ZnO Nanowire Arrays,Semiconductors, pp. 22729–22735
- [25] Y. Liu et al. (2010), Effect of Al doping on the visible photoluminescence of ZnO nanofibers,J. Alloys Compd., Vol. 506, No. 2, pp. 772–776
- [26] Q. Shi et al. (2013), Single-phased emissiontunable Mg-doped ZnO phosphors for white LEDs,J. Alloys Compd., Vol. 553, pp. 172–176
- [27] B. Sundarakannan and M. Kottaisamy (2018), ZnO:Al – A yellowish orange emitting phosphor for Blue Light -Converted White Light Emitting Diode (WLEDs),Ceram. Int., Vol. 44, No. 12, pp. 14518–14522
- [28] B. Sundarakannan and M. Kottaisamy (2016), Synthesis of blue light excitable white light emitting ZnO for luminescent converted light emitting diodes (LUCOLEDs),” Mater. Lett., Vol. 165, pp. 153–155
- [29] M. Shang, J. Fan, Y. Zhang, H. Lian, and J. Lin (2015), White-light generation and full-color in single-phase garnet-based phosphors,Inorg. Chem. Commun., Vol. 52, pp. 73–76
- [30] R. Cao et al (2019), A single-phase NaCa 2 Mg 2 V 3 O 12 :Sm 3+ phosphor: Synthesis, energy transfer, and luminescence properties,J. Lumin., Vol. 212, pp. 23–28
- [31] S. Feng et al. (2017), Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application,Eur. Ceram. Soc., Vol. 37, No. 10, pp. 3403–3409
- [32] Z. Pan, J. Chen, H. Wu, and W. Li (2017), Red emission enhancement in Ce3+/Mn2+ co-doping suited garnet host MgY2Al4SiO12 for tunable warm white LED,Opt. Mater. (Amst)., Vol. 72, pp. 257–264
- [33] W. Xiang et al. (2012), Growth and c-haracterization of air annealing Mn-doped YAG:Ce single crystal for LED,J. Alloys Compd., Vol. 542, pp. 218– 221
- [34] M. Dalal, V. B. Taxak, S. Chahar, A. Khatkar, and S. P. Khatkar (2016), A promising novel orange-red emitting SrZnV2O7:Sm3+ nanophosphor for phosphor-converted white LEDs with nearultraviolet excitation,” J. Phys. Chem. Solids, Vol. 89, pp. 45–52
- [35] P. Pust et al. (2014), Narrow-band red-emitting Sr[LiAl3 N4]:Eu2+ as a next-generation LEDphosphor material,Nat. Mater., Vol. 13, No. 9, pp. 891–896
- [36] Y. D. Xu et al. (2012), Preparation and luminescent properties of a new red phosphor (Sr4Al14O25:Mn4+) for white LEDs,J. Alloys Compd., Vol. 550, pp. 226–230
- [37] C. Yang, Z. Zhang, G. Hu, R. Cao, X. Liang, and W. Xiang (2016), A novel deep red phosphor Ca 14 Zn 6 Ga 10 O 35 :Mn 4+ as color converter for warm W-LEDs: Structure and luminescence properties,J. Alloys Compd., Vol. 694, pp. 1201– 1208
- [38] A. Calzolari, A. Ruini, and A. Catellani (2014), Transparent Conductive Oxides as Near-IR Plasmonic Materials: The Case of Al-Doped ZnO Derivatives,ACS Photonics, Vol. 1, No. 8, pp. 703–709