



- Công bố khoa học và công nghệ Việt Nam
Toán học ứng dụng
Nguyễn Thị Ngọc Như, Phạm Thanh Dược(1)
Các loại đặt chỉnh của bài toán quy hoạch hai mức
Kinds of well-posedness of bilevel optimization programmings
Khoa học (Đại học Cần Thơ)
2022
GDĐBSCL
10-18
1859-2333
TTKHCNQG, CVv 403
- [1] Ye, J. J., & Zhu, D. (2010), New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches,SIAM journal on optimization, 20(4), 1885-1905. https://doi.org/10.1137/080725088
- [2] Sinha, A., Malo, P., & Deb, K. (2017), A review on bilevel optimization: f-rom classical to evolutionary approaches and applications,IEEE transactions on evolutionary computation, 22(2), 276-295. https://doi.org/10.1109/TEVC.2017.2712906
- [3] Pardalos, P. M., Žilinskas, A., & Žilinskas, J. (2017), Non-convex multi-objective optimization,New York: Springer International Publishing. https://doi.org/10.1007/978-3-319-61007-8
- [4] Mehlitz, P., & Zemkoho, A. B. (2021), Sufficient optimality conditions in bilevel programming,Mathematics of operations research, 46(4), 1573-1598. https://doi.org/10.1287/moor.2021.1122
- [5] Miglierina, E., Molho, E., & Rocca, M. (2005), Well-posedness and scalarization in vector optimization,Journal of Optimization Theory and Applications, 126(2), 391-409. https://doi.org/10.1007/s10957-005-4723-1
- [6] Marti, K. (2005), Stochastic optimization methods,Berlin: Springer
- [7] Li, G., Tang, L., Huang, Y., & Yang, X. (2022), Stability for semivectorial bilevel programs,Journal of industrial & management optimization, 18(1), 427. https://doi.org/10.3934/jimo.2020161
- [8] Lignola, M. B., & Morgan, J. (1997), Stability of regularized bilevel programming problems,Journal of Optimization Theory and Applications, 93(3), 575-596. https://doi.org/10.1023/A:1022695113803
- [9] Kis, T., Kovács, A., & Mészáros, C. (2021), On optimistic and pessimistic bilevel optimization models for demand response management,Energies, 14, 2095. https://doi.org/10.3390/en14082095
- [10] Kassay, G., & Radulescu, V. (2018), Equilibrium problems and applications,Academic Press
- [11] Khan, A. A., Tammer, C., & Zalinescu, C. (2016), Set-valued optimization,Springer-Verlag Berlin An. https://doi.org/10.1007/978-981-15-8546-3
- [12] Jiang, C., Han, X., & Xie, H. (2021), Nonlinear Interval Optimization for Uncertain Problems,Springer Verlag, Singapro. https://doi.org/10.1007/978-981-15-8546-3
- [13] John, J. (2004), Vector Optimization,Theory, Application, and Extensions
- [14] Hansen, E., & Walster, G. W. (Eds.). (2003), Global optimization using interval analysis: revised and expanded,CRC Press. https://doi.org/10.1201/9780203026922
- [15] Hu, S., & Papageorgiou, N. S. (1997), Handbook of Multivalued Analysis,Vol. I. Theory, vol. 419 of. Mathematics and its Applications. https://doi.org/10.1007/978-1-4615-6359-4
- [16] Grötschel, M., Lovász, L., & Schrijver, A. (2012), Geometric algorithms and combinatorial optimization,Springer Science & Business Media
- [17] Göpfert, A., Riahi, H., Tammer, C., & Zalinescu, C. (2003), Variational methods in partially ordered spaces,CMS Books in Mathematics
- [18] Dempe, S. (2018), Bilevel optimization: theory, algorithms and applications,TU Bergakademie Freiberg, Fakultät für Mathematik und Informatik
- [19] Dempe, S., Kalashnikov, V. V., & Kalashnykova, N. (2006), Optimality conditions for bilevel programming problems,In Optimization with multivalued mappings, 3-28, Springer, Boston, MA. https://doi.org/10.1007/0-387-34221-4_1
- [20] Camacho-Vallejo, J. F., González-Rodríguez, E., Almaguer, F. J., & González-Ramírez, R. G. (2015), A bilevel optimization model for aid distribution after the occurrence of a disaster,Journal of Cleaner Production, 105, 134-145. https://doi.org/10.1016/j.jclepro.2014.09.069
- [21] Chen, G. Y., Huang, X., & Yang, X. (2006), Vector optimization: set-valued and variational analysis,Springer Science & Business Media
- [22] Bourbaki, N. (2013), General Topology: Chapters 1–4,Springer Science & Business Media
- [23] Bednarczuck, E. ( (1994), An approach to well-posedness in vector optimization: consequences to stability,Control and cybernetics, 23, 107-122