Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,083,452
  • Công bố khoa học và công nghệ Việt Nam

Vi sinh vật học

Phạm Thị Miền(1), Phan Minh Thụ

Vi sinh vật chuyển hóa lân khó tan trong đất và tiềm năng áp dụng trong nông nghiệp

Khoa học nông nghiệp Việt Nam

2021

08

1041-1051

2588-1299

Vi sinh vật chuyển hóa lân đã được nghiên cứu từ rất lâu để làm phân bón sinh học cho nhiều giống cây trồng cả ở phòng thí nghiệm và ngoài thực tế. Tuy nhiên, vi sinh vật chuyển hóa lân vẫn chưa được thay thế phân bón hóa học sử dụng trong nông nghiệp thương mại. Bài tổng quan này trình bày cơ chế chuyển hóa lân vô cơ và hữu cơ ở vi sinh vật được gọi là các PSM và các yếu tố chính tác động đến quá trình này. Các PSM điển hình như vi khuẩn Azotobacter, Pseudomonas, Bacillus, vi nấm Aspergillus, Penicillium, Trichoderma, xạ khuẩn Actinomyces, Streptomyces và nấm rễ cộng sinh Azospirillum, Rhizobium. Sự chuyển hóa lân chịu sự tác động chính từ sự hoạt động, tương tác của vi sinh vật trong môi trường đất, do đó chịu sự ảnh hưởng bởi chất dinh dưỡng cũng như các đặc tính lý hóa của đất và của từng vùng khí hậu. Đồng thời, một số chủng tiền năng như Azotobacter, Bacillus, Trichoderma đã và đang được áp dụng làm phân bón sinh học cũng được đề cập trong bài báo này, cho thấy việc sử dụng vi sinh vật chuyển hóa phốtphát sẽ thúc đẩy nông nghiệp phát triển bền vững và công nghệ này đã sẵn sàng để khai thác thương mại trên toàn thế giới.

TTKHCNQG, CTv 169

  • [1] Zhu F., Qu L., Hong X. & Sun X. (2011), Isolation and C-haracterization of a Phosphate-Solubilizing Halophilic Bacterium Kushneria sp. YCWA18 f-rom Daqiao Sal-tern on the Coast of Yellow Sea of China.,Evid Based Complement Al-ternat Med. pp. 32-38.
  • [2] Zhao K., Penttinen P., Zhang X., Ao X., Liu M., Yu X. & Chen Q. (2014), Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities.,Microbiological Research. 169(1): 76-82.
  • [3] Zhang L., Ding X., Chen S., He X., Zhang F. & Feng G. (2014), Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus.,Journal of Plant Interaction. 9(1): 850-856.
  • [4] Zeng Q., Wu X. & Wen X. (2016), Effects of Soluble Phosphate on Phosphate-Solubilizing C-haracteristics and Expression of gcd Gene in Pseudomonas frederiksbergensis JW-SD2.,Current Microbiology. 72(2): 198-206.
  • [5] White C., Sayer J.A. & Gadd G.M. (1997), Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination.,FEMS Microbiology Reviews. 20: 503-516.
  • [6] Wang H.-y., Liu S., Zhai L.-m., Zhang J.-z., Ren T.-z., Fan B.-q. & Liu H.-b. (2015), Preparation and utilization of phosphate biofertilizers using agricultural waste.,Journal of Integrative Agriculture. 14(1): 158-167.
  • [7] Vassilev N., Medina A., Azcon R. & Vassileva M. (2006), Microbial solubilization of rock phosphate on media containing agro-industrial wastes and effect of the resulting products on plant growth and P uptake.,Plant and Soil. 28(1): 77-84.
  • [8] Teymouri M., Akhtari J., Karkhane M. & Marzban A. (2016), Assessment of phosphate solubilization activity of Rhizobacteria in mangrove forest.,Biocatalysis and Agricultural Biotechnology. 5: 168-172.
  • [9] Tarafdar J.C., Yadav R.S. & Meena S.C. (2001), Comparative efficiency of acid phosphatase originated f-rom plant and fungal sources.,Journal of Plant Nutrition and Soil Science. 164(3): 279-282.
  • [10] Štajner D., Kevrešan S., Gašić O., Mimica-Dukić N. & Zongli H. (1997), Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet.,Biologia Plantarum. 39 (3): 441-445.
  • [11] Srinivasan R., Prabhu G., Prasad M., Mishra M., Chaudhary M. & Srivastava R. (2020), Chapter 32 - Penicillium. In N. Amaresan, M. Senthil Kumar, K. Annapurna, K. Kumar, & A. Sankaranarayanan (Eds.): Beneficial Microbes in Agro-Ecology: Academic Press. pp. 651-667.,
  • [12] Sharma S.B., Sayyed R.Z., Trivedi M.H. & Gobi T A. (2013), Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils.,SpringerPlus. 2: 587-601.
  • [13] Shakeri E., Modarres-Sanavy S.A.M., Amini Dehaghi M., Tabatabaei S.A. & Moradi-Ghahderijani M. (2016), Improvement of yield, yield components and oil quality in sesame (Sesamum indicum L.) by N-fixing bacteria fertilizers and urea.,Archives of Agronomy and Soil Science. 62(4): 547-560
  • [14] Seshachala U. & Tallapragada P. (2012), Phosphate Solubilizers f-rom the Rhizosphere of Piper nigrum L. in Karnataka, India.,Chilean journal of Agricultural Research. 72: 397-403.
  • [15] Rosado Azevedo D., Cruz D., Elsas V. & Seldin (1998), Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated f-rom the rhizoplane or rhizosphere soil of different grasses.,Journal of Applied Microbiology. 84(2): 216-226.
  • [16] Rodrý́guez H. & Fraga R. (1999), Phosphate solubilizing bacteria and their role in plant growth promotion.,Biotechnology Advances. 17(4): 319-339.
  • [17] Rodríguez H., Fraga R., Gonzalez T. & Bashan Y. (2006), Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria.,Plant and Soil. 287(1): 15-21.
  • [18] Rodrý́guez H. & Fraga R. (1999), Phosphate solubilizing bacteria and their role in plant growth promotion.,Biotechnology Advances. 17(4): 319-339.
  • [19] Rodríguez H., Fraga R., Gonzalez T. & Bashan Y. (2006), Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria.,Plant and Soil. 287(1): 15-21.
  • [20] Rodrý́guez H. & Fraga R. (1999), Phosphate solubilizing bacteria and their role in plant growth promotion.,Biotechnology Advances. 17(4): 319-339.
  • [21] Ric-hardson A.E. & Simpson R.J. (2011), Soil microorganisms mediating phosphorus availability up-date on microbial phosphorus.,Plant Physiol. 156(3): 989-996.
  • [22] Reyes I., Bernier L., Simard R.R. & Antoun H. (1999), Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants.,FEMS Microbiology Ecology. 28(3): 281-290.
  • [23] Peix A., Mateos P.F., Rodriguez-Barrueco C., Martinez-Molina E. & Velazquez E. (2001), Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions.,Soil Biology and Biochemistry. 33(14): 1927-1935.
  • [24] Park K.H., Lee C.Y. & Son H.J. (2009), Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated f-rom ginseng rhizosphere and its plant growthpromoting activities.,Letters in Applied Microbiology. 49(2): 222-228.
  • [25] Omar S.A. (1997), The role of rock-phosphatesolubilizing fungi and vesicular–arbusularmycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate.,World Journal of Microbiology and Biotechnology. 14(2): 211-218.
  • [26] Neal A.L., Blackwell M., Akkari E., Guyomar C., Clark I. & Hirsch P.R. (2018), Phylogenetic distribution, biogeography and the effects of land management upon bacterial non-specific Acid phosphatase Gene diversity and abundance.,Plant and Soil. 427(1): 175-189.
  • [27] Nautiyal C.S., Bhadauria S., Kumar P., Lal H., Mondal R. & Verma D. (2000), Stress induced phosphate solubilization in bacteria isolated f-rom alkaline soils.,FEMS Microbiology Letters. 182(2): 291-296.
  • [28] Narsian V. & Patel H.H. (2000), Aspergillus aculeatus as a rock phosphate solubilizer.,Soil Biology and Biochemistry. 32(4): 559-565.
  • [29] Nannipieri P., Giagnoni L., Landi L. & Renella G. (2011), Role of Phosphatase Enzymes in Soil. In E. Bünemann, A. Oberson, & E. Frossard (Eds.): Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling, in Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 215-243.,
  • [30] Mundra S., Arora R. & Stobdan T. (2011), Solubilization of insoluble inorganic phosphates by a novel temperature- , pH- , and salt-tolerant yeast, Rhodotorula sp. PS4, isolated f-rom seabuckthorn rhizosphere, growing in cold desert of Ladakh, India.,World Journal of Microbiology and Biotechnology. 27(10): 2387-2396.
  • [31] Mullaney E.J. & Ullah A.H.J. (2003), The term phytase comprises several different classes of enzymes.,Biochemical and Biophysical Research Communications. 312(1): 179-184.
  • [32] Mullaney E.J., Daly C.B. & Ullah A.H.J. (2000), Advances in phytase research.,In Advances in Applied Microbiology. 47: 157-199.
  • [33] Mudryk Z.J. (2004), Decomposition of organic and solubilisation of inorganic phosphorus compounds by bacteria isolated f-rom a marine sandy beach.,Marine Biology. 145(6): 1227-1234.
  • [34] Morales A., Alvear M., Valenzuela E., Rubio R. & Borie F. (2007), Effect of inoculation with Penicillium albidum, a phosphate-solubilizing fungus, on the growth of Trifolium pratense cropped in a volcanic soil.,Journal of Basic Microbiology. 47 (3): 275-280.
  • [35] Molla A.H., Manjurul Haque M., Amdadul Haque M. & Ilias G.N.M. (2012), Trichoderma-Enriched Biofertilizer Enhances Production and Nutritional Quality of Tomato (Lycopersicon esculentum Mill.) and Minimizes NPK Fertilizer Use.,Agricultural Research. 1(3): 265-272.
  • [36] Mobley D.M., Chengappa M.M., Kadel W.L. & Stuart J.G. (1984), Effect of pH, temperature and media on acid and alkaline phosphatase activity in “clinical” and “nonclinical” isolates of Bordetella bronchiseptica.,Can J Comp Med. 48(2): 175-178.
  • [37] Li Z. & Zhang H. (2001), Application of Microbial Fertilizers in Sustainable Agriculture.,Journal of Crop Production. 3(1): 337-347.
  • [38] Kumar V., Kumar Behl R. & Narula N. (), Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions.,Microbiological Research. 156(1): 87-93.
  • [39] Kumar V., Aggarwal N.K. & Singh B.P. (2000), Performance and persistence of phosphate solubilizing Azotobacter chroococcum in wheat rhizosphere.,Folia Microbiologica. 45(4): 343-347.
  • [40] Kumar S., Bauddh K., Barman S.C. & Singh R.P. (2014), Amendments of microbial biofertilizers and organic substances reduces requirement of urea and DAP with enhanced nutrient availability and productivity of wheat (Triticum aestivum L.).,Ecological Engineering. 71: 432-437.
  • [41] Khalid A., Arshad M., Shaharoona B., Mahmoud T. (2009), Plant growth promoting rhizobacteria and sustainable agriculture: In Microbial Strategies for Crop Improvement (M.S Khan, A. Zaidi & J.,Musarrant Eds.) (Berlin: Springer-Verlag).
  • [42] Kim K.Y., McDonald G.A. & Jordan D. (1997), Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium.,Biology and Fertility of Soils. 24(4): 347-352.
  • [43] Khan A.A., Jilani G., Akhtar M.S., Naqvi S.M.S. & Rasheed M. (2009), Phosphorus Solubilizing Bacteria: Occurrence, Mechanisms and their Role in Crop Production.,J. Agric. Biol. Sci. 1(1): 48-58.
  • [44] Khan M.S., Zaidi A., Ahemad M., Oves M. & Wani P.A. (2010), Plant growth promotion by phosphate solubilizing fungi - current perspective.,Archives of Agronomy and Soil Science. 56(1): 73-98.
  • [45] Johri J.K., Surange S. & Nautiyal C.S. (1999), Occurrence of Salt, pH, and Temperature-tolerant, Phosphate-solubilizing Bacteria in Alkaline Soils.,Current Microbiology. 39(2): 89-93.
  • [46] Jiang C.-y., Sheng X.-f., Qian M. & Wang Q.-y. (2008), Isolation and c-haracterization of a heavy metal-resistant Burkholderia sp. f-rom heavy metalcontaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil.,Chemosphere. 72(2): 157-164
  • [47] Jain R., Saxena J. & Sharma V. (2012), Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata cv. RMG 492) growth.,Folia Microbiologica. 57(6): 533-541.
  • [48] Istina I.N., Widiastuti H., Joy B. & Antralina M. (2015), Phosphate-solubilizing Microbe f-rom Saprists Peat Soil and their Potency to Enhance Oil Palm Growth and P Uptake.,Procedia Food Science. 3: 426-435.
  • [49] Illmer P., Barbato A. & Schinner F. (1995), Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganisms.,Soil Biology and Biochemistry. 27(3): 265-270.
  • [50] Hariprasad P. & Niranjana S.R. (2009), Isolation and c-haracterization of phosphate solubilizing rhizobacteria to improve plant health of tomato.,Plant and Soil. 316(1): 13-24.
  • [51] Gyaneshwar P., Parekh L.J., Archana G., Poole P.S., Collins M.D., Hutson R.A. & Kumar G.N. (1999), Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae.,FEMS Microbiology Letters. 171(2): 223-229.
  • [52] Gupta R., Bisaria V.S. & Sharma S. (2016), Response of rhizospheric bacterial communities of Cajanus cajan to application of bioinoculants and chemical fertilizers: A comparative study.,European Journal of Soil Biology. 75: 107-114.
  • [53] Goldstein A.H. (1994), Involvement of The Quinoprotein Glucose Dehydrohenase: In The Solubilization of Exogenous Phosphates by Gramnegative Bacteria (A. Torriani-Gorini, E. Yagiland, & S. Silver Eds.).,Washington (DC): ASM Press.
  • [54] Ertan Y., Huseyin K., Metin T., Atilla D. & Fahrettin G. (2011), Growth, Nutrient Uptake, and Yield Promotion of Broccoli by Plant Growth Promoting Rhizobacteria with Manure.,HortScience horts. 46(6): 932-936.
  • [55] Dastager S.G. & Damare S. (2013), Marine Actinobacteria Showing Phosphate-Solubilizing Efficiency in Chorao Island, Goa, India.,Current Microbiology. 66(5): 421-427.
  • [56] Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A. & Young C.C. (2006), Phosphate solubilizing bacteria f-rom subtropical soil and their tricalcium phosphate solubilizing abilities.,Applied Soil Ecology. 34(1): 33-41.
  • [57] Bünemann E.K. (2008), Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients.,Soil Biology and Biochemistry. 40(9): 2116-2129.
  • [58] Biswas J.K., Banerjee A., Rai M., Naidu R., Biswas B., Vithanage M. & Meers E. (2018), Potential application of se-lected metal resistant phosphate solubilizing bacteria isolated f-rom the gut of earthworm (Metaphire posthuma) in plant growth promotion.,Geoderma. 330: 117-124.
  • [59] Bidondo L.F., Silvani V., Colombo R., Pérgola M., Bompadre J. & Godeas A. (2011), Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated f-rom AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host.,Soil Biology and Biochemistry. 43(9): 1866-1872.
  • [60] Bhattac-haryya P.N. & Jha D.K. (2012), Plant growthpromoting rhizobacteria (PGPR): emergence in agriculture.,World J Microbiol Biotechnol. 28(4): 1327-1350.
  • [61] Bashan Y. & de-Bashan L.E. (2010), Chapter Two - How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth-A Critical Assessment. In D.L. Sparks (Ed.).,Advances in Agronomy. 108: 77-136.
  • [62] Banik A., Dash G.K., Swain P., Kumar U., Mukhopadhyay S.K. & Dangar T.K. (2019), Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition.,Microbiological Research. 219: 56-65.
  • [63] Azziz G., Bajsa N., Haghjou T., Taulé C., Valverde Á., Igual J.M. & Arias A. (2012), Abundance, diversity and prospecting of culturable phosphate solubilizing bacteria on soils under crop-pasture rotations in a no-tillage regime in Uruguay.,Applied Soil Ecology. 61: 320-326.
  • [64] Asea P.E.A., Kucey R.M.N. & Stewart J.W.B. (1988), Inorganic phosphate solubilization by two Penicillium species in solution culture and soil.,Soil Biology and Biochemistry. 20(4): 459-464.
  • [65] Alori E.T., Glick B.R. & Babalola O.O. (2017), Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture.,Frontiers in Microbiology. 8: 971-978.
  • [66] Akladious S.A. & Abbas S.M. (2014), Application of Trichoderma harzianum T22 as a Biofertilizer potential in maize growth.,Journal of Plant Nutrition. 37(1): 30-49.