



- Công bố khoa học và công nghệ Việt Nam
Kỹ thuật điện và điện tử
Trần Yến Mi(2), Nguyễn Lê Hoài Phương, Nguyễn Thành Tiên(1)
Nghiên cứu cấu trúc và tính chất điện tử của dãy nano P2C dạng ngũ giác biên răng cưa bằng phương pháp mô phỏng phiếm hàm mật độ
Structural and electronic properties of p-P2C-SS: A DFT study
Khoa học (Đại học Cần Thơ)
2022
CĐKHTN
23-28
1859-2333
TTKHCNQG, CVv 403
- [1] Zhuang, H. L. (2019), F-rom pentagonal geometries to two-dimensional materials,Computational Materials Science, 159, 448-453. Doi: 10.1016/j.commatsci.2018.12.041
- [2] Zhang, S., Zhou, J., Wang, Q., Chen, X., Kawazoe, Y., & Jena, P. (2015), Penta-graphene: A new carbon allotrope,Proceedings of the National Academy of Sciences, 112(8), 2372-2377. Doi: 10.1073/pnas.1416591112
- [3] Tien, N. T., Thao, P. T. B., Phuc, V. T., & Ahuja, R. (2020), Influence of edge termination on the electronic and transport properties of sawtooth penta-graphene nanoribbons,Journal of Physics and Chemistry of Solids, 146, 109528. Doi: 10.1016/j.jpcs.2020.109528
- [4] Tang, L., Cheng, M. Q., Chen, Q., Huang, T., Yang, K., Huang, W. Q., Hu. W., & Huang, G. F. (2020), Ultrahigh sensitivity and se-lectivity of pentagonal SiC2 monolayer gas sensors: The synergistic effect of composition and structural topology,Physica Status Solidi (b), 257(3), 1900445. Doi: 10.1002/pssb.201900445
- [5] Sun, S., Meng, F., Xu, Y., He, J., Ni, Y., & Wang, H. (2019), Flexible, auxetic and strain-tunable two dimensional penta-X2C family as water splitting photocatalysts with high carrier mobility,Journal of Materials Chemistry A, 7(13), 7791-7799. Doi: 10.1039/C8TA12405A
- [6] Rajbanshi, B., Sarkar, S., Mandal, B., & Sarkar, P. (2016), Energetic and electronic structure of pentagraphene nanoribbons,Carbon, 100, 118-125. Doi: 10.1016/j.carbon.2016.01.014
- [7] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996), Generalized gradient approximation made simple,Physical review letters, 77(18), 3865
- [8] Oliveira, M. J., & Nogueira, F. (2008), Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the Atomic Pseudo-potentials Engine,Computer Physics Communications, 178(7), 524-534. Doi: 10.1016/j.cpc.2007.11.003
- [9] Naseri, M., Lin, S., Jalilian, J., Gu, J., & Chen, Z. (2018), Penta-P2X (X= C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction,Frontiers of Physics, 13(3), 1-9. Doi: 10.1007/s11467-018-0758-2
- [10] Monkhorst, H. J., & Pack, J. D. (1976), Special points for Brillouin-zone integrations,Physical review B, 13(12), 5188. Doi: 10.1103/PhysRevB.13.5188
- [11] Mi, T. Y., Khanh, N. D., Ahuja, R., & Tien, N. T. (2021), Diverse structural and electronic properties of pentagonal SiC2 nanoribbons: A first-principles study,Materials Today Communications, 26, 102047. Doi: 10.1016/j.mtcomm.2021.102047
- [12] Mi, T. Y., Triet, D. M., & Tien, N. T. (2020), Adsorption of gas molecules on penta-graphene nanoribbon and its implication for nanoscale gas sensor,Physics Open, 2, 100014. Doi: 10.1016/j.physo.2020.100014
- [13] Lopez-Bezanilla, A., & Littlewood, P. B. (2015), σ– π-band inversion in a novel two-dimensional material,The Journal of Physical Chemistry C, 119(33), 19469-19474. Doi: 10.1021/acs.jpcc.5b04726
- [14] Liu, X., Ouyang, T., Zhang, D., Huang, H., Wang, H., Wang, H., & Ni, Y. (2020), First-principles calculations of phonon transport in twodimensional penta-X2C family,Journal of Applied Physics, 127(20), 205106. Doi: 10.1063/5.0004904
- [15] Li, Y. H., Yuan, P. F., Fan, Z. Q., & Zhang, Z. H. (2018), Electronic properties and carrier mobility for penta-graphene nanoribbons with nonmetallic-atom-terminations,Organic Electronics, 59, 306-313. Doi: 10.1016/j.orgel.2018.05.039
- [16] Correa, J. D., Pacheco, M., Bravo, S., & Chico, L. (2020), Electronic and magnetic properties of pentagonal nanoribbons,Carbon, 162, 209-219. Doi: 10.1016/j.carbon.2020.02.037