Lọc theo danh mục
liên kết website
Lượt truy cập
- Công bố khoa học và công nghệ Việt Nam
10403 - Hoá lý
Đào Duy Quang, Trương Đình Hiếu(2), Nguyễn Thị Lê Anh(1)
Bàn về hoạt tính quét gốc tự do của Ochracene I - một hợp chất sesquiterpenoid có trong chiết xuất nấm biển
On the free radical scavenging activities of Ochracene I - A sesquiterpenoid available in marine fungus
Tạp chí khoa học và công nghệ - Trường Đại Duy Tân
2022
52
66-74
1859-4905
TTKHCNQG, CVv 416
- [1] T. Masuda, K. Yamada, T. Maekawa, Y. Takeda, H. Yamaguchi (2006), Antioxidant Mechanism Studies on Ferulic Acid: Identification of Oxidative Coupling Products f-rom Methyl Ferulate and Linoleate,J. Agric. Food Chem. 54, pp. 6069–6074.
- [2] A. Galano, J.R. Alvarez-Idaboy, M. FranciscoMárquez (2011), Physicochemical Insights on the Free Radical Scavenging Activity of Sesamol: Importance of the Acid/Base Equilibrium,J. Phys. Chem. B. 115, pp. 13101–13109.
- [3] J.R. León-Carmona, A. Galano (2011), Is Caffeine a Good Scavenger of Oxygenated Free Radicals?,J. Phys. Chem. B. 115, pp. 4538–4546.
- [4] A. Galano, J.R. Alvarez-Idaboy (2011), Glutathione: mechanism and kinetics of its nonenzymatic defense action against free radicals,RSC Adv. 1, pp. 1763–1771.
- [5] E.N. Bentz, R.M. Lobayan, H. Martínez, P. Redondo, A. Largo (2018), Intrinsic Antioxidant Potential of the Aminoindole Structure: A Computational Kinetics Study of Tryptamine,J. Phys. Chem. B. 122 (2018), pp. 6386–6395.
- [6] M.E. Alberto, N. Russo, A. Grand, A. Galano (2013), A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment,Phys. Chem. Chem. Phys. 15, pp. 4642–4650.
- [7] T.C. Ngo, T.V.-T. Mai, T.T. Pham, S. Jeremic, Z. Markovic, L.K. Huynh, D.Q. Dao (2020), Natural acridones and coumarins as free radical scavengers: Mechanistic and kinetic studies,Chem. Phys. Lett. 746, pp. 137312.
- [8] T.L.A. Nguyen, T.H.N. Doan, D.H. Truong, N.T. Ai Nhung, D.T. Quang, D. Khiri, S. Taamalli, F. Louis, A. El Bakali, D.Q. Dao (2021), Antioxidant and UV-radiation absorption activity of aaptamine derivatives – potential application for natural organic sunscreens,RSC Adv. 11, pp. 21433– 21446.
- [9] D.H. Truong, T.C. Ngo, N.T.A. Nhung, D.T. Quang, T.L.A. Nguyen, D. Khiri, S. Taamalli, F. Louis, A. El Bakali, D.Q. Dao (2022), New insights into the competition between antioxidant activities and pro-oxidant risks of rosmarinic acid,RSC Adv. 12, pp. 1499–1514.
- [10] A. Miyoshi (2013), GPOP software.,Revision 2013.07.15m7, http://akrmys.com/gpop/.
- [11] M. Dalla Tiezza, T.A. Hamlin, F.M. Bickelhaupt, L. Orian (2021), Scavenging Potential of the Phenothiazine Scaffold: A Computational Analysis,Chem. Med. Chem. 16, pp. 3763–3771.
- [12] C. Eckart (1930), The Penetration of a Potential Barrier by Electrons,,Phys. Rev. 35, pp. 1303–1309.
- [13] M.G. Evans, M. Polanyi (1935), Some applications of the transition state method to the calculation of reaction velocities, especially in solution, Trans.,Faraday Soc. 31, pp. 875–894.
- [14] D.L. Singleton, R.J. Cvetanovic (1976), Temperature dependence of the reaction of oxygen atoms with olefins,J. Am. Chem. Soc. 98, pp. 6812– 6819.
- [15] Z. Marković, J. Tošović, D. Milenković, S. Marković (2016), Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents, Comput.,Theor. Chem. 1077, pp. 11–17.
- [16] A. V Marenich, C.J. Cramer, D.G. Truhlar (2009), Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions,J. Phys. Chem. B. 113, pp. 6378–6396.
- [17] A. Galano, J.R. Alvarez-Idaboy (2014), Kinetics of radical-molecule reactions in aqueous solution: A benchmark study of the performace of density functional methods,J. Comput. Chem. 35, pp. 2019–2026.
- [18] D. Khiri, S. Taamalli, A. El Bakali, F. Louis, Č. Ivan, T.C. Ngo, T.L.A. Nguyen, D.Q. Dao (2021), Detailed kinetic study of hydrogen abstraction reactions of triphenylene, benzo[e]pyrene, dibenzo[fg,op]naphtacene, and coronene by H atoms,Int. J. Chem. Kinet., pp. 1–11.
- [19] Y. Zhao, D.G. Truhlar (2008), The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function, Theor.,Chem. Acc. 120, pp. 215–241.
- [20] D.Q. Dao, T.T.T. Phan, T.L.A. Nguyen, P.T.H. Trinh, T.T. Van Tran, J.S. Lee, H.J. Shin, B.-K. Choi (2020), Insight into Antioxidant and Photoprotective Properties of Natural Compounds f-rom Marine Fungus,J. Chem. Inf. Model. 60, pp. 1329–1351.
- [21] B. Ben-Nissan (2015), Discovery and development of marine biomaterials,Functional Marine Biomaterials, Woodhead Publishing, pp. 3–32.
- [22] J.W. Blunt, A.R. Carroll, B.R. Copp, R.A. Davis, R.A. Keyzers, M.R. Prinsep (2018), Marine natural products, Nat.,Prod. Rep. 35, pp. 8–53.
