



- Công bố khoa học và công nghệ Việt Nam
Hoá lý
Đào Duy Quang, Trương Đình Hiếu(2), Nguyễn Thị Lê Anh(1)
Bàn về hoạt tính quét gốc tự do của Ochracene I - một hợp chất sesquiterpenoid có trong chiết xuất nấm biển
On the free radical scavenging activities of Ochracene I - A sesquiterpenoid available in marine fungus
Tạp chí khoa học và công nghệ - Trường Đại Duy Tân
2022
52
66-74
1859-4905
TTKHCNQG, CVv 416
- [1] T. Masuda, K. Yamada, T. Maekawa, Y. Takeda, H. Yamaguchi (2006), Antioxidant Mechanism Studies on Ferulic Acid: Identification of Oxidative Coupling Products f-rom Methyl Ferulate and Linoleate,J. Agric. Food Chem. 54, pp. 6069–6074.
- [2] A. Galano, J.R. Alvarez-Idaboy, M. FranciscoMárquez (2011), Physicochemical Insights on the Free Radical Scavenging Activity of Sesamol: Importance of the Acid/Base Equilibrium,J. Phys. Chem. B. 115, pp. 13101–13109.
- [3] J.R. León-Carmona, A. Galano (2011), Is Caffeine a Good Scavenger of Oxygenated Free Radicals?,J. Phys. Chem. B. 115, pp. 4538–4546.
- [4] A. Galano, J.R. Alvarez-Idaboy (2011), Glutathione: mechanism and kinetics of its nonenzymatic defense action against free radicals,RSC Adv. 1, pp. 1763–1771.
- [5] E.N. Bentz, R.M. Lobayan, H. Martínez, P. Redondo, A. Largo (2018), Intrinsic Antioxidant Potential of the Aminoindole Structure: A Computational Kinetics Study of Tryptamine,J. Phys. Chem. B. 122 (2018), pp. 6386–6395.
- [6] M.E. Alberto, N. Russo, A. Grand, A. Galano (2013), A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment,Phys. Chem. Chem. Phys. 15, pp. 4642–4650.
- [7] T.C. Ngo, T.V.-T. Mai, T.T. Pham, S. Jeremic, Z. Markovic, L.K. Huynh, D.Q. Dao (2020), Natural acridones and coumarins as free radical scavengers: Mechanistic and kinetic studies,Chem. Phys. Lett. 746, pp. 137312.
- [8] T.L.A. Nguyen, T.H.N. Doan, D.H. Truong, N.T. Ai Nhung, D.T. Quang, D. Khiri, S. Taamalli, F. Louis, A. El Bakali, D.Q. Dao (2021), Antioxidant and UV-radiation absorption activity of aaptamine derivatives – potential application for natural organic sunscreens,RSC Adv. 11, pp. 21433– 21446.
- [9] D.H. Truong, T.C. Ngo, N.T.A. Nhung, D.T. Quang, T.L.A. Nguyen, D. Khiri, S. Taamalli, F. Louis, A. El Bakali, D.Q. Dao (2022), New insights into the competition between antioxidant activities and pro-oxidant risks of rosmarinic acid,RSC Adv. 12, pp. 1499–1514.
- [10] A. Miyoshi (2013), GPOP software.,Revision 2013.07.15m7, http://akrmys.com/gpop/.
- [11] M. Dalla Tiezza, T.A. Hamlin, F.M. Bickelhaupt, L. Orian (2021), Scavenging Potential of the Phenothiazine Scaffold: A Computational Analysis,Chem. Med. Chem. 16, pp. 3763–3771.
- [12] C. Eckart (1930), The Penetration of a Potential Barrier by Electrons,,Phys. Rev. 35, pp. 1303–1309.
- [13] M.G. Evans, M. Polanyi (1935), Some applications of the transition state method to the calculation of reaction velocities, especially in solution, Trans.,Faraday Soc. 31, pp. 875–894.
- [14] D.L. Singleton, R.J. Cvetanovic (1976), Temperature dependence of the reaction of oxygen atoms with olefins,J. Am. Chem. Soc. 98, pp. 6812– 6819.
- [15] Z. Marković, J. Tošović, D. Milenković, S. Marković (2016), Revisiting the solvation enthalpies and free energies of the proton and electron in various solvents, Comput.,Theor. Chem. 1077, pp. 11–17.
- [16] A. V Marenich, C.J. Cramer, D.G. Truhlar (2009), Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions,J. Phys. Chem. B. 113, pp. 6378–6396.
- [17] A. Galano, J.R. Alvarez-Idaboy (2014), Kinetics of radical-molecule reactions in aqueous solution: A benchmark study of the performace of density functional methods,J. Comput. Chem. 35, pp. 2019–2026.
- [18] D. Khiri, S. Taamalli, A. El Bakali, F. Louis, Č. Ivan, T.C. Ngo, T.L.A. Nguyen, D.Q. Dao (2021), Detailed kinetic study of hydrogen abstraction reactions of triphenylene, benzo[e]pyrene, dibenzo[fg,op]naphtacene, and coronene by H atoms,Int. J. Chem. Kinet., pp. 1–11.
- [19] Y. Zhao, D.G. Truhlar (2008), The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function, Theor.,Chem. Acc. 120, pp. 215–241.
- [20] D.Q. Dao, T.T.T. Phan, T.L.A. Nguyen, P.T.H. Trinh, T.T. Van Tran, J.S. Lee, H.J. Shin, B.-K. Choi (2020), Insight into Antioxidant and Photoprotective Properties of Natural Compounds f-rom Marine Fungus,J. Chem. Inf. Model. 60, pp. 1329–1351.
- [21] B. Ben-Nissan (2015), Discovery and development of marine biomaterials,Functional Marine Biomaterials, Woodhead Publishing, pp. 3–32.
- [22] J.W. Blunt, A.R. Carroll, B.R. Copp, R.A. Davis, R.A. Keyzers, M.R. Prinsep (2018), Marine natural products, Nat.,Prod. Rep. 35, pp. 8–53.