



- Công bố khoa học và công nghệ Việt Nam
Quản lý và bảo vệ rừng
Phan Kiều Diễm(1), Nguyễn Kiều Diễm, Amnat Chithaisong
Đánh giá tổng sản lượng sơ cấp rừng rụng lá sử dụng mô hình quang hợp và ảnh viễn thám - Trường hợp nghiên cứu tại Thái Lan
Evaluating the gross primary productivity of dry dipterocarp forest using vegetation photosynthesis model and remote sensing data: Case study in Thailand
Khoa học (ĐH Cần Thơ)
2020
5A
42-51
1859-2333
TTKHCNQG, CVv 403
- [1] Yu, G.; Song, X.; Wang, Q., et al. (2008), Water‐use efficiency of forest ecosystems in eastern China and its relations to climatic variables,The New Phytologist. 177(4): 927-937. doi:10.1111/j.1469-8137.2007.02316
- [2] Xiao, J.; Zhuang, Q.; Law, B. E., et al. (2010), A continuous measure of gross primary production for the conterminous United States derived f-rom MODIS and AmeriFlux data,Remote Sensing of Environment. 114(3): 576–591. https://doi.org/https://doi.org/10.1016/j.rse.2009.10.013
- [3] Xiao, X.; Zhang, Q.; Braswell, B., et al. (2004), Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data,Remote Sensing of Environment. 91(2): 256–270. https://doi.org/10.1016/j.rse.2004.03.010
- [4] Wolf, S.; Baldocchi, D.; Wolf, S., et al. (2016), Warm spring reduced carbon cycle impact of the 2012 US summer drought,Proceedings of the National Academy of Sciences, 24 May, 2016. National Academy of Sciences (NAS). USA. 113 (21): 5880-5885. doi: 10.1073/pnas.1519620113
- [5] Wagle, P.; Xiao, X.; Torn, M. S., et al. (2014), Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought,Remote Sensing of Environment. Elsevier Inc. 152: 1–14. doi: 10.1016/j.rse.2014.05.010
- [6] Wang, Q.; Zhu, X.; Yu, G., et al. (2014), Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China,Journal of Forest Research. 19(1): 70-76. DOI: 10.1007/s10310-013-0390-5
- [7] Wang, H.; Jia, G.; Fu, C.; Feng, J.; Zhao, T.,; Ma, Z. (2010), Deriving maximal light use efficiency f-rom coordinated flux measurements and satellite data for regional gross primary production modeling,Remote Sensing of Environment. 114(10): 2248–2258. https://doi.org/10.1016/j.rse.2010.05.001
- [8] Sanwangsri, M.; Hanpattanakit, P.; Chidthaisong, A. (2017), Variations of energy fluxes and ecosystem evapotranspiration in a young secondary dry dipterocarp forest in Western Thailand,Atmosphere. 8(8):152. https://doi.org/10.3390/atmos8080152
- [9] Potter, C. S.; Randerson, J. T.; Field, C. B., et al. (1993), Terrestrial ecosystem pro- duction—a process model-based on global satellite and surface data,Global Biogeochemical Cycles, 7, 811–841
- [10] Nguyễn Văn Thêm (2008), Giáo trình Rừng và môi trường,Trường Đại học Bình Dương
- [11] Mahadevan, P.; Matross, D. M.; Wofsy, S. C., et al. (2005), Modeling Large-Scale Biosphere NEE by Integrating Satellite Images and Climate Data – Vegetation Photosynthesis and Respiration Model (VPRM),In the AGU Fall Meeting Abstracts. 2005. A41C–0055
- [12] Kumar, A.; Bhatia, A.; Fagodiya, R.K.; Malyan, S.K.; Meena, B.L. (2017), Eddy covariance flux tower: a promising technique for greenhouse gases measurement,Advances in Plants and Agriculture Research. 7(4): 337-340. DOI: 10.15406/apar.2017.07.00263
- [13] Jia, W. X.; Liu, M.; She, Q. N., et al. (2016), Optimization and evaluation of key photosynthesis parameters in forest ecosystems based on FLUXNET data and VPM model,Chinese Journal of Applied Ecology. 27(4): 1095–1102. https://doi.org/10.13287/j.1001- 9332.201604.010
- [14] (2007), Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A.],IPCC, Geneva, Switzerland, 104 pp
- [15] Hoan, N. T.; Tateishi, R. (2013), Global MODIS 250 m dataset for 10 years (2003- 2012). User’s manual,Center for Environmental Remote Sensing (CEReS) Chiba University. pp. 20
- [16] Hanes, J. M. (2014), Biophysical Applications of Satellite Remote Sensing. Remote Sensing of Forest Biomass,Springer. Berlin. 236. https://doi.org/10.1007/978-3-642-25047-7
- [17] Friedl, M. a; Gray, J. M.; Melaas, E. K., et al. (2014), A tale of two springs: using recent climate anomalies to c-haracterize the sensitivity of temperate forest phenology to climate change,Environmental Research Letters. 9(5): 054006. https://doi.org/10.1088/1748-9326/9/5/054006
- [18] Diem, P K.; Chidthaisong, A.; Varnakovida, P.; Kaewthongrach, R. (2018), Estimating the gross primary production of secondary dry dipterocarp forest using vegetation photosynthesis model,In 7th International Conference on Sustainable Energy and Environment (SEE 2018): Technology & Innovation for Global Energy Revolution 28-30 November 2018, Bangkok, Thailand. pp. 397–400
- [19] Cavaleri, M. A.; Coble, A. P.; Ryan, M. G., et al. (2017), Tropical rainforest carbon sink declines during El Niño as a result of reduced photosynthesis and increased respiration rates,The New Phytologist. 216(1): 136–149. https://doi.org/10.1111/nph.14724
- [20] Behrenfeld, M. J.; Randerson, J. T.; McClain, C. R., et al. (2001), Biospheric primary production during an ENSO transition,Science, 291, 2594–2597