Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  21,945,728
  • Công bố khoa học và công nghệ Việt Nam

68

Khoa học công nghệ trồng trọt khác

BB

Phùng Trường Trinh, Chu Đức Hà, Phạm Minh Triển(1)

Tổng quan về ứng dụng của thiết bị bay không người lái trong canh tác trên đồng ruộng

A comprehensive overview of unmanned aerial vehicles in open fields

Khoa học và Công nghệ Lâm nghiệp

2024

2

112-122

1859-3828

Canh tác nông nghiệp hiện nay đang có xu hướng áp dụng thiết bị bay không người lái (unmanned aerial vehicle, UAV) giúp tăng cường hiệu quả sản xuất và quản lý nông trại bền vững. Tuy nhiên, chưa có nhiều báo cáo tổng quan về vai trò của UAV trong canh tác. Mục tiêu của bài tổng quan nhằm đưa ra cái nhìn toàn diện về các ứng dụng của UAV trong giám sát sức khỏe cây trồng, lập bản đồ canh tác, phun thuốc bảo vệ thực vật và phát hiện cỏ dại. Cụ thể, UAV mang lại khả năng giám sát và thu thập dữ liệu chính xác về tình trạng cây trồng và đất đai từ trên cao giúp nông dân đưa ra quyết định phù hợp. Từ việc phát hiện sâu bệnh, đánh giá sức khỏe cây trồng, ước lượng sản lượng và phun thuốc bảo vệ thực vật, UAV cung cấp giải pháp toàn diện giúp giải quyết những thách thức của canh tác truyền thống. Sử dụng UAV giúp tiết kiệm thời gian và nguồn lực, giảm thiểu sự phụ thuộc vào lao động và tăng cường khả năng tự động hóa trong quản lý nông trại. Các công nghệ tiên tiến như phân tích hình ảnh và các mô hình học máy được tích hợp với UAV giúp xử lý và phân tích dữ liệu thu thập, từ đó tối ưu hóa các quy trình canh tác, nâng cao năng suất và chất lượng cây trồng. Kết quả của bài tổng quan này cung cấp những hiểu biết toàn diện về ứng dụng của UAV trong canh tác nông nghiệp, từ đó bổ sung những định hướng quan trọng cho quy trình canh tác chính xác trên đồng ruộng.

Current crop productions in open fields are increasingly incorporating unmanned aerial vehicles (UAV) to significantly enhance both the efficiency of production and the sustainability of farm management practices. However, there are few broad assessments on the use of UAVs in crop production. The purpose of this review is to provide a comprehensive overview of UAV applications in crop health monitoring, farming mapping, pesticide spraying, and weed detection. Particularly, UAVs facilitate precise monitoring and data collection regarding crop conditions and land status from aerial perspectives, thereby enabling farmers to make final decisions. This encompasses a range of applications from pest and disease detection, crop health assessment, yield estimation, to the precise application of pesticides, UAVs emerge as an integrative solution to confront the myriad challenges associated with conventional practices. Furthermore, the utilization of UAVs contributes to substantial time and resource savings, diminishes reliance on manual labor, and augments the potential for farm management automation.

TTKHCNQG, CVv 421

  • [1] Roldán J., Joossen G., Sanz D., Del Cerro J. & Barrientos A. (2015), Mini-UAV based sensory system for measuring environmental variables in greenhouses.,Sensors.
  • [2] Shi Q., Liu D., Mao H., Shen B., Liu X. & Ou M. (2019), Study on assistant pollination of facility tomato by UAV. 2019 ASABE Annual International Meeting. 1.,
  • [3] Ju C. & Son H. I. (2018), Multiple UAV systems for agricultural applications: Control, implementation, and evaluation.,Electronics.
  • [4] Erdelj M., Saif O., Natalizio E. & Fantoni I. (2019), UAVs that fly forever: Uninterrupted structural inspection through automatic UAV replacement.,Ad Hoc Networks.
  • [5] Park S., Lee H. & Chon J. (2019), Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.,Environmental Pollution.
  • [6] Hung C., Xu Z. & Sukkarieh S. (2014), Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a UAV.,Remote Sensing.
  • [7] Ahmed F., Al-Mamun H., Bari A. S. M., Hossain E. & Kwan P. (2012), Classification of crops and weeds from digital images: A support vector machine approach.,Crop Protection.
  • [8] Faiçal S., Freitas H., Gomes H., Mano Y., Pessin G., de Carvalho F., Krishnamachari B. & Ueyama J. (2017), An adaptive approach for UAV-based pesticide spraying in dynamic environments.,Comput Electron Agric.
  • [9] Johansen K., Duan Q., Tu H., Searle C., Wu D., Phinn S., Robson A. & McCabe F. (2020), Mapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery.,ISPRS J Photogramm Remote Sens.
  • [10] Gomez S., Vergara A., Montenegro F., Alonso R., Safari N., Raymaekers D., Ocimati W., Ntamwira J., Tits L., Omondi A. & Blomme G. (2020), Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin.,ISPRS J Photogramm Remote Sens.
  • [11] Zheng J., Fu H., Li W., Wu W., Yu L., Yuan S., Tao W., Pang T. & Kanniah K. (2021), Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images.,ISPRS J Photogramm Remote Sens. .
  • [12] Ashapure A., Jung J., Chang A., Oh S., Yeom J., Maeda M., Maeda A., Dube N., Landivar J., Hague S. & Smith W. (2020), Developing a machine learning based cotton yield estimation framework using multi-temporal UAS data.,ISPRS J Photogramm Remote Sens.
  • [13] Zhang M., Zhou J., Sudduth A. & Kitchen R. (2020), Estimation of maize yield and effects of variablerate nitrogen application using UAV-based RGB imagery.,Biosystems Eng.
  • [14] Aslan M., Durdu A., Sabanci K., Ropelewska E. & Gültekin S. (2022), A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses.,Applied Sciences.
  • [15] Ding R., Luo J., Wang C., Yu L., Yang J., Wang M., Zhong S. & Gu R. (2023), Identifying and mapping individual medicinal plant Lamiophlomis rotata at high elevations by using unmanned aerial vehicles and deep learning.,Plant Methods.
  • [16] Sapoukhina N., Boureau T. & Rousseau D. (2022), Plant disease symptom segmentation in chlorophyll fluorescence imaging with a synthetic dataset. .,Front Plant Sci.
  • [17] Ma X., Deng X., Qi L., Jiang Y., Li H., Wang Y. & Xing X. (2019), Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields.,PLoS One.
  • [18] Yang T., Zhou S., Xu A., Ye J. & Yin J. (2023), An approach for plant leaf image segmentation based on YOLOV8 and the improved DEEPLABV3.,Plants.
  • [19] Torres-Sánchez J., Peña J., de Castro A. & López F. (2014), Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV.,Comput Electron Agric.
  • [20] Sun C., Feng L., Zhang Z., Ma Y., Crosby T., Naber M. & Wang Y. (2020), Prediction of end-of-season tuber yield and tuber set in potatoes using in-season UAVbased hyperspectral imagery and machine learning.,Sensors.
  • [21] Perich G., Hund A., Anderegg J., Roth L., Boer M. P., Walter A., Liebisch F. & Aasen H. (2020), Assessment of multi-image unmanned aerial vehicle based highthroughput field phenotyping of canopy temperature.,Front Plant Sci.
  • [22] Schiefer F., Kattenborn T., Frick A., Frey J., Schall P., Koch B. & Schmidtlein S. (2020), Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks.,ISPRS J Photogramm Remote Sens.
  • [23] Pearse Grant D., Tan Alan Y. S., Watt Michael S., Franz Matthias O. & Dash Jonathan P. (2020), Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data.,ISPRS J Photogramm Remote Sens.
  • [24] Barrile V., Simonetti S., Citroni R., Fotia A. & Bilotta G. (2022), Experimenting agriculture 4.0 with sensors: A data fusion approach between remote sensing, UAVs and self-driving tractors.,Sensors.
  • [25] Khater E. G., Ali S. A., Afify M. T., Bayomy M. A. & Abbas R. S. (2022), Using of geographic information systems (GIS) to determine the suitable site for collecting agricultural residues.,Sci Rep. : .
  • [26] Hassan S. I., Alam M. M., Zia M. Y. I., Rashid M., Illahi U. & Su'ud M. M. (2022), Rice crop counting using aerial imagery and GIS for the assessment of soil health to increase crop yield.,Sensors.
  • [27] Gašparović M., Zrinjski M., Barković D. & Radočaj D. (2020), An automatic method for weed mapping in oat fields based on UAV imagery.,Comput Electron Agric.
  • [28] Khan S., Tufail M., Khan M. T., Khan Z. A., Iqbal J. & Wasim A. (), Real-time recognition of spraying area for UAV sprayers using a deep learning approach.,PLoS One.
  • [29] Chen P., Douzals J. P., Lan Y., Cotteux E., Delpuech X., Pouxviel G. & Zhan Y. (2022), Characteristics of unmanned aerial spraying systems and related spray drift: A review.,Front Plant Sci.
  • [30] Meng Y., Zhong W., Liu C., Su J., Su J., Lan Y., Wang Z. & Wang M. (2022), UAV spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution.,PeerJ.
  • [31] Alordzinu K. E., Li J., Lan Y., Appiah S. A., Al Aasmi A., Wang H., Liao J., Sam-Amoah L. K. & Qiao S. (2021), Ground-based hyperspectral remote sensing for estimating water stress in tomato growth in sandy loam and silty loam soils.,Sensors. 21(17): .
  • [32] Zhang H., Ge Y., Xie X., Atefi A., Wijewardane N. K. & Thapa S. (2022), High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion.,Plant Methods.
  • [33] Comba L., Biglia A., Ricauda Aimonino D., Tortia C., Mania E., Guidoni S. & Gay P. (2020), Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery.,Precision Agriculture.
  • [34] Hassan M. A., Yang M., Rasheed A., Yang G., Reynolds M., Xia X., Xiao Y. & He Z. (2019), A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform.,Plant Sci.
  • [35] Meng Y., Su J., Song J., Chen W. & Lan Y. (2020), Experimental evaluation of UAV spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution.,Comput Electron Agric.
  • [36] Pan Z., Lie D., Qiang L., Shaolan H., Shilai Y., Yande L., Yongxu Y. & Haiyang P. (2016), Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution.,Int J Agricult Biol Eng.
  • [37] lost F. H., Heldens B., Kong Z. & de Lange S. (2020), Drones: Innovative technology for use in precision pest management.,J Econ Entomol.
  • [38] Johansen K., Morton J. L., Malbeteau Y., Aragon B., Al-Mashharawi S., Ziliani G., Angel Y., Fiene G., Negrão S., Mousa A. A., Tester A. & McCabe F. (2020), Predicting biomass and yield in a tomato phenotyping experiment using UAV imagery and random forest.,Front Artif Intell.
  • [39] Cao Y., Li G., & Zhang S. (2020), Monitoring of sugar beet growth indicators using wide-dynamic-range vegetation index (WDRVI) derived from UAV multispectral images.,Comput Electron Agric.
  • [40] Subramanian K. S., Pazhanivelan S., Srinivasan G., Santhi R. & Sathiah N. (2021), Drones in insect pest management.,Front Agron.
  • [41] Blasch G., Anberbir T., Negash T., Tilahun L., Belayineh F. Y., Alemayehu Y., Mamo G., Hodson D. P. & Rodrigues F. A., Jr. (2023), The potential of UAV and very high-resolution satellite imagery for yellow and stem rust detection and phenotyping in Ethiopia.,Sci Rep.
  • [42] Li B., Xu X., Zhang Li, Han Jiwan, Bian Chunsong, Li Guangcun, Liu Jiangang & Jin Liping (2020), Aboveground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging.,ISPRS J Photogramm Remote Sens.
  • [43] Ye H., Huang W., Huang S., Cui B., Dong Y., Guo A., Ren Y. & Jin Y. (2020), Recognition of banana Fusarium wilt based on UAV remote sensing.,Remote Sensing.
  • [44] Sousa J. J., Toscano P., Matese A., Di Gennaro S. F., Berton A., Gatti M., Poni S., Padua L., Hruska J., Morais R. & Peres E. (2022), UAV-based hyperspectral monitoring using push-broom and snapshot sensors: A multisite assessment for precision viticulture applications.,Sensors.
  • [45] Zhu W., Rezaei E., Nouri H., Sun Z., Li J., Yu D. & Siebert S. (2022), UAV-based indicators of crop growth are robust for distinct water and nutrient management but vary between crop development phases.,Field Crops Research.
  • [46] Zhao Y., Ma J., Li X. & Zhang J. (2018), Saliency detection and deep learning-based wildfire identification in UAV imagery.,Sensors.
  • [47] Zhang C., Atkinson M., George C., Wen Z., Diazgranados M. & Gerard F. (2020), Identifying and mapping individual plants in a highly diverse highelevation ecosystem using UAV imagery and deep learning.,ISPRS J Photogramm Remote Sens.
  • [48] Allred B., Eash N., Freeland R., Martinez L. & Wishart D. (2018), Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: A case study.,Agric Water Manag.
  • [49] Bouguettaya A., Zarzour H., Kechida A. & Taberkit A. M. (2023), A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images.,Cluster Comput.
  • [50] Ninkov A., Frank J. R. & Maggio L. A. (2022), Bibliometrics: Methods for studying academic publishing.,Perspect Med Educ.
  • [51] Tunca E., Köksal E. S., Çetin S., Ekiz N. M. & Balde H. (2018), Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images.,Environ Monit Assess.
  • [52] Su X., Wang J., Ding L., Lu J., Zhang J., Yao X., Cheng T., Zhu Y., Cao W. & Tian Y. (2023), Grain yield prediction using multi-temporal UAV-based multispectral vegetation indices and endmember abundance in rice.,Field Crops Research.
  • [53] Panday U., Pratihast A., Aryal J. & Kayastha R. (2020), A review on drone-based data solutions for cereal crops.,Drones.
  • [54] Kim J., Kim S., Ju C. & Son H. I. (2019), Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications.,IEEE Access.
  • [55] Wang T., Liu Y., Wang M., Fan Q., Tian H., Qiao X. & Li Y. (2021), Applications of UAS in crop biomass monitoring: A review.,Front Plant Sci.
  • [56] Christiansen M. P., Laursen M. S., Jorgensen R. N., Skovsen S. & Gislum R. (2017), Designing and testing a UAV mapping system for agricultural field surveying.,Sensors.
  • [57] Hernandez A., Murcia H., Copot C. & De Keyser R. (2015), Towards the development of a smart flying sensor: illustration in the field of precision agriculture.,Sensors.
  • [58] Fu Z., Jiang J., Gao Y., Krienke B., Wang M., Zhong K., Zhu Y., Cao W. & Liu X. (2020), Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle.,Remote Sensing.
  • [59] Baykalov P., Bussmann B., Nair R., Smith A. G., Bodner G., Hadar O., Lazarovitch N. & Rewald B. (2023), Semantic segmentation of plant roots from RGB (mini-) rhizotron images-generalisation potential and false positives of established methods and advanced deeplearning models.,Plant Methods.
  • [60] Liu Y., Nie C., Zhang Z., Wang Z., Ming B., Xue J., Meng L., Cui N., Wu W. & Jin X. (2022), Evaluating how lodging affects maize yield estimation based on UAV observations.,Front Plant Sci.
  • [61] Kerkech M., Hafiane A. & Canals R. (2020), Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach.,Comput Electron Agric.
  • [62] Tetila E., Machado B., Astolfi G., Belete N., Amorim W., Roel A. & Pistori H. (2020), Detection and classification of soybean pests using deep learning with UAV images.,Comput Electron Agric.
  • [63] Ivezić A., Trudić B., Stamenković Z., Kuzmanović B., Perić S., Ivošević B., Buđen M. & Petrović K. (2023), Drone-related agrotechnologies for precise plant protection in Western Balkans: Applications, possibilities, and legal framework limitations.,Agronomy.
  • [64] Jin D., Yin H., Zheng R., Yoo S. J. & Gu Y. H. (2023), PlantInfoCMS: Scalable plant disease information collection and management system for training AI models.,Sensors.
  • [65] Ahmed M. A., Gallardo J. L., Zuniga M. D., Pedraza M. A., Carvajal G., Jara N. & Carvajal R. (2022), LoRa based IoT platform for remote monitoring of largescale agriculture farms in Chile.,Sensors.
  • [66] Navarro E., Costa N. & Pereira A. (2020), A systematic review of IoT solutions for smart farming.,Sensors. 20(15):
  • [67] Shi J., An G., Weber A. P. M. & Zhang D. (2023), Prospects for rice in 2050.,Plant Cell Environ.
  • [68] Ehrlich P. R. & Harte J. (2015), Opinion: To feed the world in 2050 will require a global revolution.,Proc Natl Acad Sci U S A.