Lọc theo danh mục
liên kết website
Lượt truy cập
- Công bố khoa học và công nghệ Việt Nam
20
Khoa học thông tin
Nguyễn Hồng Bửu Long(1), Phạm Hùng Việt
Tăng cường tri thức cú pháp cho dịch máy mạng neural sử dụng bộ mã hóa đồ thị
Syntax-enhanced neural machine translation with graph encoder
Tạp chí Khoa học - Đại học Sư phạm TP Hồ Chí Minh
2022
10
1725-1734
1859-3100
TTKHCNQG, CTv 138
- [1] Xu, K., Wu, L., Wang, Z., Feng, Y., & Sheinin, V. (2018), Graph2seq: Graph to sequence learning with attention-based neural networks,CoRR, abs/1804.00823. Retrieved f-rom http://arxiv.org/abs/1804.00823
- [2] Wu, F., Fan, A., Baevski, A., Dauphin, Y. N., & Auli, M. (2019), Pay less attention with lightweight and dynamic convolutions,CoRR, abs/1901.10430 Retrieved f-rom http://arxiv.org/abs/1901.10430
- [3] Wang, Y., Wang, L., Zeng, X., Wong, D. F., Chao, L. S., & Lu, Y. (2004), Factored statistical machine translation for grammatical error correction.,In Proceedings of the eighteenth conference on computational natural language learning: Shared task (pp. 83-90). Baltimore, Maryland: Association for Computational Linguistics. Retrieved f-rom https://aclanthology.org/W14-1711 doi: https://doi.org/10.3115/v1/W14-1711
- [4] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017), Attention is all you need.,CoRR, abs/1706.03762. Retrieved f-rom http://arxiv.org/abs/1706.03762
- [5] Sennrich, R., Haddow, B., & Birch, A. (2016), Neural machine translation of rare words with subword units.,In Proceedings of the 54th annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 1715-1725). Berlin, Germany: Association for Computational Linguistics. Retrieved f-rom https://www.aclweb.org/anthology/P16-1162 doi: https://doi.org/10.18653/v1/P16-1162
- [6] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002), Bleu: A method for automatic evaluation of machine translation,In Proceedings of the 40th annual meeting on association for computational linguistics (p. 311-318). USA: Association for Computational Linguistics. Retrieved f-rom https://doi.org/10.3115/1073083.1073135 doi: https://doi.org/10.3115/1073083.1073135
- [7] Nădejde, M., Reddy, S., Sennrich, R., Dwojak, T., Junczys-Dowmunt, M., Koehn, P., & Birch, A. (2017), Predicting target language CCG supertags improves neural machine translation.,In Proceedings of the second conference on machine translation (pp. 68-79). Copenhagen, Denmark: Association for Computational Linguistics. Retrieved f-rom https://aclanthology.org/W17-4707 doi: https://doi.org/10.18653/v1/W17-4707
- [8] Li, J., Xiong, D., Tu, Z., Zhu, M., Zhang, M., & Zhou, G. (2017), Modeling source syntax for neural machine translation.,In Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 688-697). Vancouver, Canada: Association for Computational Linguistics. Retrieved f-rom https://aclanthology.org/P17-1064 doi: https://doi.org/10.18653/v1/P17-1064
- [9] Koehn, P., & Hoang, H. (2017), Factored translation models,In Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP-CoNLL) (pp. 868-876). Prague, Czech Republic: Association for Computational Linguistics. Retrieved f-rom https://aclanthology.org/D07-1091
- [10] Koehn, P. (2004), Statistical significance tests for machine translation evaluation.,In Proceedings of the 2004 conference on empirical methods in natural language processing (pp. 388-395). Barcelona, Spain: Association for Computational Linguistics. Retrieved f-rom https://aclanthology.org/W04-3250
- [11] Kingma, D. P., & Ba, J. (2015), Adam: A method for stochastic optimization,In Y. Bengio & Y. LeCun (Eds.), 3rd international conference on learning representations, ICLR 2015, San Diego, Ca, Usa, May 7-9, 2015, conference track proceedings. Retrieved f-rom http://arxiv.org/abs/1412.6980
- [12] Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017), Convolutional sequence to sequence learning. CoRR, abs/1705.03122,Retrieved f-rom http://arxiv.org/abs/1705.03122
- [13] Eriguchi, A., Hashimoto, K., & Tsuruoka, Y. (2016), Tree-to-sequence attentional neural machine translation. In Proceedings of the 54th annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 823-833).,Berlin, Germany: Association for Computational Linguistics. Retrieved f-rom https://aclanthology.org/P16-1078 doi: https://doi.org/10.18653/v1/P16-1078
- [14] Cettolo, M., Niehues, J., Stüker, S., Bentivogli, L., Cattoni, R., & Federico, M. (2015), The iwslt 2015 evaluation campaign. Chen, H., Huang, S., Chiang, D., & Chen, J. (2017, July). Improved neural machine translation with a syntax-aware encoder and decoder. In Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long papers) (pp. 1936–1945).,Vancouver, Canada: Association for Computational Linguistics. Retrieved f-rom https://aclanthology.org/P17-1177 doi: https://doi.org/10.18653/v1/P17-1177
- [15] Bahdanau, D., Cho, K., & Bengio, Y. (2015), Neural machine translation by jointly learning to align and translate.,In Y. Bengio & Y. LeCun (Eds.), 3rd international conference on learning representations, ICLR 2015, Sandiego, Ca, Usa, May 7-9, 2015, conference track proceedings. Retrieved f-rom http://arxiv.org/abs/1409.0473
