



- Công bố khoa học và công nghệ Việt Nam
68
Nông hoá
BB
Vũ Minh Trung, Phạm Châu Thùy, Chu Đức Hà, Phạm Minh Triển(1)
Tổng quan về hệ thống điều khiển tưới chính xác trong canh tác
An overview of control systems for precision irrigation in crop production
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
2023
05
278-286
1859-2171
Quản lý nguồn nước tưới tiêu trong canh tác được xem là một trong những nhiệm vụ trọng tâm của ngành nông nghiệp nhằm đảm bảo năng suất của cây trồng. Các phương pháp tưới tiêu truyền thống gây ra sự lãng phí về nguồn tài nguyên nước. Do đó, cần thiết phải xây dựng hệ thống điều khiển tưới tiêu nhằm can thiệp vào tốc độ nước, lượng nước, thời điểm tưới và vị trí tưới phù hợp. Tuy nhiên, những hiểu biết về xây dựng hệ điều khiển sử dụng trong tưới tiêu vẫn còn hạn chế. Mục tiêu của bài tổng quan này nhằm tóm lược những hệ điều khiển dạng vòng mở và dạng vòng kín được áp dụng phổ biến trong tưới tiêu. Cụ thể, nguyên lý hoạt động và ưu nhược điểm của từng hệ thống được phân tích, các thông số môi trường, cây trồng và đất đã được đề cập một cách cụ thể. Trong đó, các hệ điều khiển dạng vòng kín, điển hình như hệ điều khiển tuyến tính, hệ điều khiển thông minh và điều khiển dự báo dựa trên mô hình đã được tóm lược đầy đủ. Kết quả của bài tổng quan này có thể định hướng cho việc xây dựng những mô hình hệ thống điều khiển tưới chính xác phục vụ canh tác các loại cây trồng có giá trị kinh tế cao.
Water management has been considered as one of the central tasks of the agriculture sector for sustainable crop production. However, the conventional irrigation systems may cause a huge waste of water supply. Thus, it would be very significant to construct a variety of irrigation controllers to justify the water flow, water volume, time and position. Unfortunately, the understanding of the generation of irrigation control systems has been still lacking. The purpose of this review article was to comprehensively summarize the open and closed-loop irrigation control systems. Particularly, the operations, advantages and disadvantages of the irrigation control systems were comprehensively summarized, the parameters tightly associated with the atmosphere, crop, and soil were mentioned. Among them, closed-loop irrigation control systems, like linear control, intelligent control, and model predictive control were provided. Taken together, the understanding obtained f-rom this review article could orientate the further establishment of precious irrigation control systems for valuable crop production.
TTKHCNQG, CTv 178
- [1] A. Afzal et al. (2017), Leaf thickness and electrical capacitance as measures of plant water status,Trans. ASABE
- [2] Q. Bo et al. (2021), Intelligent control of agricultural irrigation through water demand prediction based on artificial neural network,Comput. Intell. Neurosci.
- [3] P. Patil et al. (2013), Intelligent irrigation control system by employing wireless sensor networks,Int. J. Comput. Appl.
- [4] C. Lozoya et al. (2014), Model predictive control for closed-loop irrigation,IFAC Proc. Vol.
- [5] V. Puig et al. (2012), Model predictive control of combined irrigation and water supply systems: Application to the Guadiana river,Int. Conf. Netw. Sens. Control
- [6] A. A. Emmanuel et al. (2021), A model predictive controller for precision irrigation using discrete lagurre networks,Comput. Electron. Agric.
- [7] D. Tseng et al. (2018), Towards automating precision irrigation: Deep learning to infer local soil moisture conditions from synthetic aerial agricultural images,Int. Conf. Autom. Sci. Eng.
- [8] M. F. Allawi et al. (2018), Synchronizing artificial intelligence models for operating the dam and reservoir system,Water Resour. Manag.
- [9] W. Chen et al. (2011), Improved nonlinear model predictive control based on genetic algorithm,Adv. Model Predictive Control
- [10] S. Eid et al. (2018), Developments of an expert system for on-farm irrigation water management under arid conditions,J. Soil Sci. Agric. Eng.
- [11] R. Shahzadi et al. (2016), Internet of things based expert system for smart agriculture,Int. J. Adv. Comput. Sci. Appl.
- [12] A. Nada et al. (2014), Irrigation expert system for trees,Int. J. Eng. Innov. Technol.
- [13] J. M. McKinion et al. (1985), Expert systems for agriculture,Comput. Electron. Agric.
- [14] J. Gu et al. (2017), An improved back propagation neural network prediction model for subsurface drip irrigation system,Comput. & Electr. Eng.
- [15] S. M. Umair et al. (2010), Automation of irrigation system using ANN based controller,Int. J. Electr. & Comput. Sci.
- [16] S. Sharma et al. (2016), Prediction of evapotranspiration by artificial neural network and conventional methods,Int. J. Eng. Res.
- [17] J. Kelley et al. (2019), Using neural networks to estimate site-specific crop evapotranspiration with low-cost sensors,Agronomy
- [18] S.W. Tsang et al. (2016), Applying artificial intelligence modeling to optimize green roof irrigation,Energy and Buildings
- [19] F. Viani et al. (2017), Low-cost wireless monitoring and decision support for water saving in agriculture,IEEE Sensors Journal
- [20] M. H. Hussain et al. (2011), Fuzzy logic controller for automation of greenhouse irrigation system,CUTSE International Conference
- [21] S. Fengshen et al. (2018), Research on water-fertilizer integrated technology based on neural network prediction and fuzzy control,IOP Conf. Ser.: Earth Environ. Sci.
- [22] B. Keswani et al. (2019), Adapting weather conditions based IoT enabled smart irrigation technique in precision agriculture mechanisms,Neural Computing and Applications
- [23] L. Wang et al. (2018), An adaptive fuzzy hierarchical control for maintaining solar greenhouse temperature,Computers and Electronics in Agriculture
- [24] F. Hasan et al. (2018), Implementation of fuzzy logic in autonomous irrigation system for efficient use of water,ICIEV & IVPR Conference
- [25] A. K. Mousa et al. (2014), Fuzzy based decision support model for irrigation system management,Int. J. Computer Application
- [26] A. Goldstein et al. (2018), Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist’s tacit knowledge,Precision Agriculture
- [27] S. Dimitriadis et al. (2008), Applying machine learning to extract new knowledge in precision agriculture applications,Panhellenic Conference on Informatics
- [28] A. Gloria et al. (2021), Sustainable irrigation system for farming supported by machine learning and realtime sensor data,Sensors
- [29] G. Mantri et al. (2013), Design and optimization of PID controller using genetic algorithm,Int. J. Res. Eng. Technol.
- [30] M. S. Goodchild et al. (2018), A novel dielectric tensiometer enabling precision PID-based irrigation control of polytunnel-grown strawberries in coir,Biosystems Engineering
- [31] M. Huang et al. (2022), Parameter optimization of PID controller for water and fertilizer control system based on partial attraction adaptive firefly algorithm,Scientific Reports
- [32] M. Mohammed et al. (2021), Efficient IoT-based control for a smart subsurface irrigation system to enhance irrigation management of date palm,Sensors
- [33] C. Kamienski et al. (2019), Smart water management platform: IoT-based precision irrigation for agriculture,Sensors
- [34] B. Rekha et al. (2017), Review on closed loop automated irrigation system,The Asian Review of Civil Engineering
- [35] M. Rufi-Salis et al. (2020), Closed-loop crop cascade to optimize nutrient flows and grow low-impact vegetables in cities,Frontiers in Plant Sciences
- [36] H. Tran et al. (2021), Establishment of the drip irrigation methods combined with the fertilizer levels in cultivation of mango in Mekong Delta,Journal of Water Resources
- [37] F. F. Montesano et al. (2016), Timer versus moisture sensor-based irrigation control of soilless lettuce: Effects on yield, quality and water use efficiency,Horticultural Sciences
- [38] A. Sudarmaji et al. (2019), Time based automatic system of drip and sprinkler irrigation for horticulture cultivation on coastal area,IOP Conf. Ser.: Earth Environ. Sci.
- [39] H. Zia et al. (2021), An experimental comparison of IoT-based and traditional irrigation scheduling on a flood-irrigated subtropical lemon farm,Sensors
- [40] F. S. Zazueta et al. (1992), Microcomputer-based control of irrigation systems,Applied Engineering in Agriculture
- [41] S. Anderson (1995), Caloric irrigators: air, open-loop water and closed-loop water,British Journal of Audiology
- [42] A. A. Emmanuel et al. (2020), A review on monitoring and advanced control strategies for precision irrigation,Computers and Electronics in Agriculture
- [43] L. Garcia et al. (2020), IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture,Sensors
- [44] F. A. Ward et al. (2008), Water conservation in irrigation can increase water use,Proc. Natl. Acad. Sci. U.S.A.
- [45] P. D. Hynds et al. (2014), Contamination of groundwater systems in the US and Canada by enteric pathogens, 1990–2013: A review and pooled-analysis,PLoS One
- [46] Q. T. Ha et al. (2021), Investigation on sweet orange farming practices and establishment of the watering model combined with fertilizing for development of sweet orange in Hung Yen,Journal of Vietnam Agricultural Science and Technology
- [47] V. H. Nguyen et al. (2022), An assessment of irrigated rice cultivation with different crop establishment practices in Vietnam,Scientific Reports
- [48] K. Wiebe et al. (2015), Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios,Environmental Research Letters
- [49] S. Fahad et al. (2017), Crop production under drought and heat stress: Plant responses and management options,Frontiers in Plant Science
- [50] D. C. Plett et al. (2020), The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity,Journal of Experimental Botany