Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  30,442,373
  • Công bố khoa học và công nghệ Việt Nam

31

Hoá lý

Phan Bích Hà, Nguyễn Khánh Thy, Nguyễn Diệu Linh, Nguyễn Thị Thiên Hằng(1), Trần Hoàng Phương

Tổng hợp 5-hydroxymethylfurfural từ cellulose sử dụng xúc tác silica-amorphous carbon và choline chloride:CrCl3.

Synthesis of 5-hydroxymethylfurfural f-rom cellulose using silica-amorphous carbon and choline chloride:CrCl3

Khoa học & công nghệ Việt Nam

2023

03B

12 - 17

1859-4794

Chất xúc tác silica-amorphous carbon (SAC) gắn nhóm SO3H bằng phương pháp than hóa không hoàn toàn glucose và sulfon hóa với H2SO4 đậm đặc đã được điều chế thành công và xác định cấu trúc bằng phổ hồng ngoại (FTIR), giản đồ nhiễu xạ tia X (XRD), phương pháp phổ tán sắc năng lượng tia X (EDX). Vật liệu này được ứng dụng làm xúc tác cho phản ứng tổng hợp 5-hydroxymethylfurfural (HMF) từ cellulose dưới sự hỗ trợ của dung môi cộng tinh sâu (DES - Deep eutectic solvent) choline chloride (ChCl):CrCl3. Các kết quả cho thấy, hiệu suất HMF cao nhất tại nhiệt độ phản ứng 140ºC trong 1 giờ với hàm lượng cellulose 162 mg, 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) 6 mmol, xúc tác SAC 10 mg và DES ChCl:CrCl3 0,5 mmol. Đặc biệt, chất xúc tác có khả năng thu hồi và tái sử dụng 3 lần với hiệu suất giảm không đáng kể trong quá trình chuyển hóa cellulose thành HMF.

The silica-amorphous carbon bearing SO3H group was synthesised by incomplete carbonisation of glucose and sulfonation with concentrated H2SO4 and the structure was determined by FTIR, XRD, and EDX. In this study, their catalytic activities were investigated in the synthesis of 5-hydroxymethylfurfural (HMF) f-rom cellulose with choline chloride:CrCl3 deep eutectic solvent (DES). The results showed the highest yield of HMF at a reaction temperature of 140ºC for 1 h with 162 mg cellulose, 6 mmol [EMIM]Cl, 10 mg silica-amorphous carbon and 50% mol DES ChCl:CrCl3. In particular, the catalyst was able to recover and reuse three times with a small decrease in yield for the conversion of cellulose to HMF.

TTKHCNQG, CVv 8

  • [1] Y. Román‐Leshkov (2010), Mechanism of glucose isomerization using a solid Lewis acid catalyst in water.,Angewandte Chemie, 122, pp.9138-9141.
  • [2] R.J. Clark; C.S. Williams (1965), The far-infrared spectra of metal-halide complexes of pyridine and related ligands.,Inorg. Chem., 4, pp.350-357.
  • [3] R. Zhong; B.F. Sels (2018), Sulfonated mesoporous carbon and silica-carbon nanocomposites for biomass conversion.,Appl. Catal. B: Environ., 236, pp.518-545.
  • [4] P.H. Tran; P.V. Tran (2019), A highly se-lective and efficient method for the production of 5-hydroxymethylfurfural f-rom dehydration of fructose using SACS/DES catalytic system.,Fuel, 246, pp.18-23.
  • [5] L.J. Konwar (2019), SO3H-containing functional carbon materials: Synthesis, structure, and acid catalysis.,Chem. Rev., 119, pp.11576-11630.
  • [6] W. Haworth; W. Jones (1944), The conversion of sucrose into furan compounds. Part I. 5-hydroxymethylfurfuraldehyde and some derivatives.,J. Chem. Soc., 183, pp.667-670.
  • [7] X.Y. Liu (2010), Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process.,Molecules, 15, pp.7188-7196.
  • [8] M. Goswami (2015), Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol.,Bioresour. Technol., 188, pp.99-102.
  • [9] M. Hara (2004), A carbon material as a strong protonic acid.,Angew. Chem., 116, pp.3015-3018.
  • [10] P. Gupta; S. Paul (2011), Amorphous carbon-silica composites bearing sulfonic acid as solid acid catalysts for the chemose-lective protection of aldehydes as 1, 1-diacetates and for N-, O-and S-acylations.,Green Chem., 13, pp.2365-2372.
  • [11] K. Nakajima; M. Hara (2012), Amorphous carbon with SO3H groups as a solid brønsted acid catalyst.,ACS Catal., 2, pp.1296-1304.
  • [12] P. Lanzafame (2011), Etherification of 5-hydroxymethyl-2- furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts.,Catal. Today, 175, pp.435-441.
  • [13] O.O. James (2010), Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural.,Energy Environ. Sci., 3, pp.1833-1850.
  • [14] H.V. Van Dam (1986), The conversion of fructose and glucose in acidic media: Formation of hydroxymethylfurfural.,Starch‐Stärke, 38, pp.95-101.
  • [15] L. Ye (2021), Recent progress in furfural production f-rom hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent se-lection.,Mol. Catal., 515, DOI: 10.1016/j.mcat.2021.111899.
  • [16] A.A. Rosatella (2011), 5-hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications.,Green Chem., 13, pp.754-793.
  • [17] Q. Ma (2022), Production of high-yield 5-hydroxymethylfurfural f-rom crystalline cellulose via one-pot conversion in molten salt hydrate/ acetone and separation.,Fuel, 324, DOI: 10.1016/j.fuel.2022.124678.
  • [18] R.J. Van Putten (2013), Hydroxymethylfurfural, a versatile platform chemical made f-rom renewable resources.,Chem. Rev., 113, pp.1499-1597.
  • [19] J.J. Bozell; G.R. Petersen (2010), Technology development for the production of biobased products f-rom biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited.,Green Chem., 12, pp.539-554.
  • [20] T. Thananatthanachon; T.B. Rauchfuss (2010), Efficient production of the liquid fuel 2,5‐dimethylfuran f-rom fructose using formic acid as a reagent.,Angew. Chem., 122, pp.6766-6768.
  • [21] A. Onda (2008), Se-lective hydrolysis of cellulose into glucose over solid acid catalysts.,Green Chemistry, 10, pp.1033-1037.
  • [22] Y. Wang (2018), Industrial production, application, microbial biosynthesis and degradation of furanic compound, hydroxymethylfurfural (HMF).,AIMS Microbiol., 4, DOI: 10.3934/microbiol.2018.2.261.
  • [23] S. Wang (2022), Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system.,Renew. Energy, 190, pp.1-10.
  • [24] J. Jae (2010), Depolymerization of lignocellulosic biomass to fuel precursors: Maximizing carbon efficiency by combining hydrolysis with pyrolysis.,Energy Environ. Sci., 3, pp.358-365.
  • [25] N. Mosier (2005), Features of promising technologies for pretreatment of lignocellulosic biomass.,Bioresour. Technol., 96, pp.673-686.