



- Công bố khoa học và công nghệ Việt Nam
Điện hóa
Đinh Trần Trọng Hiếu, Lâm Hoàng Hảo, Trần Thanh Danh, Trần Hoàng Long, Nguyễn Tiến Cường(4), Trần Văn Mẫn(5), Trương Thị Hồng Loan, Trần Duy Tập(2)(1), Van Man TRAN(3)
Nghiên cứu cơ chế ghép mạch và sulfo hóa của màng dẫn proton sử dụng trong pin nhiên liệu hydro
Study on the mechanism of graft polymerization and sulfonation of proton exchange membranes for fuel cell
Khoa học & công nghệ Việt Nam
2022
6B
7 - 13
1859-4794
TTKHCNQG, CVv 8
- [1] G. Zundel (1969), Hydration structure and intermolecular interaction in polyelectrolytes.,Angewandte Chemie International Edition in English, 8(7), pp.499-509.
- [2] Z. Su; S.L. Hsu; X. Li (1994), Spectroscopic and thermal studies of sulfonated syndiotactic polystyrene.,Macromolecules, 27(1), pp.287-291.
- [3] I. Šmit; A. Bezjak (1981), Structural changes in the grafted copolymer polyethylene-styrene.,Polymer, 22(5), pp.590-596.
- [4] T. Seguchi; N. Tamura (1973), Mechanism of decay of alkyl radicals in irradiated polyethylene on exposure to air as studied by electron spin resonance.,The Journal of Physical Chemistry, 77, pp.40-44.
- [5] V.S. Ivanov (1992), Radiation chemistry of polymers.,New Concepts in Polymer Science, 37, pp.49-60.
- [6] A. Chapiro (1979), Radiation induced polymerization.,Radiation Physics and Chemistry (1977), 14, pp.101-116.
- [7] K. Enomoto (2011), Degradation manner of polymer grafts chemically attached on thermally stable polymer films: swelling-induced detachment of hyd-rophilic grafts f-rom hyd-rophobic polymer substrates in aqueous media.,Journal of Materials Chemistry, 21, pp.9343-9349.
- [8] J. Chen (2006), Effect of crosslinkers on the preparation and properties of ETFE-based radiation-grafted polymer electrolyte membranes.,Journal of Applied Polymer Science, 100, pp.4565-4574.
- [9] J. Chen (2006), Preparation and c-haracterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films.,Journal of Membrane Science, 269(1-2), pp.194-204.
- [10] P. Duvauchelle (1999), Effective atomic number in the rayleigh to Compton scattering ratio.,Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 155(3), pp.221-228.
- [11] J.H. Hubbell (2006), Electron-positron pair production by photons: a historical overview.,Radiation Physics and Chemistry, 75(6), pp.614-623.
- [12] J. Weber; D.J. Van Den Berge (1969), The effective atomic number and the calculation of the composition of phantom materials.,The British Journal of Radiology, 42(497), pp.378-383.
- [13] A.S. Brar; S.K. Hekmatyar (2001), C-haracterization of styrene/methacrylic acid copolymers by 2D‐NMR spectroscopy.,Journal of Applied Polymer Science, 82, pp.2444-2453.
- [14] T.K. Kwei (1993), Solid-state NMR analysis of blends of nylon 6 and zinc salts of sulfonated polystyrene ionomers.,Macromolecules, 26, pp.6583-6588.
- [15] M.J. Cánovas (2006), Proton mobility in hydrated sulfonated polystyrene: NMR and impedance studies.,Journal of Membrane Science, 280, pp.461-469.
- [16] J. Li (2004), Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. I: Influence of styrene grafting conditions.,European Polymer Journal, 40, pp.775-783.
- [17] J.R. Varcoe (2007), Poly (ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells.,Chemistry of Materials, 19, pp.2686-2693.
- [18] K. Yoshimura (2014), Imidazolium cation based anion-conducting electrolyte membranes prepared by radiation induced grafting for direct hydrazine hydrate fuel cells.,Journal of the Electrochemical Society, 161, pp.889-893.
- [19] K. Jetsrisuparb (2014), Proton conducting membranes prepared by radiation grafting of styrene and various comonomers.,European Polymer Journal, 53, pp.75-89.
- [20] B. Mattsson (1999), Micro-raman investigations of PVDF-based proton‐ conducting membranes.,Journal of Polymer Science Part A: Polymer Chemistry, 37, pp.3317-3327.
- [21] B. Mattsson (2000), Degradation of a fuel cell membrane, as revealed by micro-raman spectroscopy.,Electrochimica Acta, 45(8-9), pp.1405-1408.
- [22] T.D. Tap (2015), Study of lamellar structures of graft-type fluorinated proton exchange membranes by small-angle X-ray scattering: preparation procedures and grafting degree dependence for fuel application.,Science and Technology Development Journal, 18, pp.153-161.
- [23] T.D. Tap (2018), Humidity and temperature effects on mechanical properties and conductivity of graft-type polymer electrolyte membrane.,Radiation Physics and Chemistry, 151, pp.186-191.
- [24] T.T. Duy (2013), Poly (ethylene-co-tetrafluoroethylene)(ETFE)-based graft-type polymer electrolyte membranes with different ion exchange capacities: relative humidity dependence for fuel cell applications.,Journal of Membrane Science, 447, pp.19-25.
- [25] T.D. Tap (2014), Hierarchical structure-property relationships in graft-type fluorinated polymer electrolyte membranes using small-and ultrasmall-angle x-ray scattering analysis.,Macromolecules, 47, pp.2373-2383.
- [26] H.A. Zen (2013), Effect of radiation induced crosslinking and degradation of ETFE films.,Radiation Physics and Chemistry, 84, pp.136-139.
- [27] D. Sebastian; V. Baglio (2017), Advanced materials in polymer electrolyte fuel cells.,Materials, 10, DOI: 10.3390/ma10101163.
- [28] D. Brandell (2007), Molecular dynamics studies of the Nafion®, Dow® and Aciplex® fuel-cell polymer membrane systems.,Journal of Molecular Modeling, 13, pp.1039-1046.
- [29] A. Veziroglu; R. Macario (2011), Fuel cell vehicles: state of the art with economic and environmental concerns.,International Journal of Hydrogen Energy, 36, pp.25-43.
- [30] Y. Wang (2020), Materials, technological status, and fundamentals of PEM fuel cells - a review.,Materials Today, 32, pp.178-203.
- [31] B. Smitha (2005), Solid polymer electrolyte membranes for fuel cell applications - a review.,Journal of Membrane Science, 259, pp.10-26.