Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,488,641
  • Công bố khoa học và công nghệ Việt Nam

Điện hóa

Đinh Trần Trọng Hiếu, Lâm Hoàng Hảo, Trần Thanh Danh, Trần Hoàng Long, Nguyễn Tiến Cường(4), Trần Văn Mẫn(5), Trương Thị Hồng Loan, Trần Duy Tập(2)(1), Van Man TRAN(3)

Nghiên cứu cơ chế ghép mạch và sulfo hóa của màng dẫn proton sử dụng trong pin nhiên liệu hydro

Study on the mechanism of graft polymerization and sulfonation of proton exchange membranes for fuel cell

Khoa học & công nghệ Việt Nam

2022

6B

7 - 13

1859-4794

Poly(ethylene-co-tetrafluoroethylene) (ETFE) ghép poly(styrene sulfonic acid) màng điện giải polymer (ETFE-PEM) được tổng hợp ghép mạch khơi mào bởi bức xạ gamma từ nguồn 60Co thông qua 3 bước: (i) Chiếu xạ, (ii) Ghép polystyrene vào phim ETFE (PS-g-ETFE) và (iii) Sulfo hóa (ETFE-PEM). Cơ chế ghép mạch và sulfo hóa của ETFE-PEM với mức độ ghép 22% và sulfo hóa 93% được nghiên cứu bởi phổ cộng hưởng từ hạt nhân 13C rắn (solid 13C NMR), phổ hồng ngoại biến đổi Fourier (FT-IR) và kính hiển vi điện tử quét phát xạ trường (FE-SEM). Các kết quả cho thấy, styrene được ghép vào polymer nền ETFE bằng phản ứng phá vỡ liên kết π được gây ra bởi các gốc tự do và tạo thành chuỗi polystyrene trên bề mặt pha tinh thể. Các styrene vào sau vẫn tiếp tục khuếch tán vào sâu trong màng từ hai mặt do sự chênh lệch gradient nồng độ. Quá trình ghép mạch xảy ra trên cả vị trí C-H và C-F của mạch polymer ETFE nền, nhưng tại vị trí C-F nhiều hơn, trong khi đó các phản ứng sulfo hóa để tạo màng dẫn proton chỉ xảy ra tại vị trí para trên vòng thơm của polystyrene. Các phản ứng phụ, sản phẩm thứ cấp của quá trình ghép và sulfo hóa không được tìm thấy trên các phổ 13C NMR, FT-IR thu được, chứng tỏ các quá trình ghép, sulfo hóa đã được kiểm soát tốt.

Poly (styrenesulfonic acid)-grafted poly(ethylene-co-tetrafluoroethylene) polymer electrolyte membrane (ETFE-PEM) applied for fuel cells was prepared by radiation induced-grafting using gamma-ray f-rom 60Co source based on three steps (i) irradiation, (ii) polystyrene-grafted poly(ethylene-alt-tetrafluoroethylene) (PS-g-ETFE), and (iii) sulfonation (ETFE-PEM). Mechanism of grafting and sulfonation of ETFE-PEM with grafting degree of 22% and sulfonation degree of 93% was revealed by solid 13C nuclear magnetic resonance (solid 13C NMR), Fourier transform infrared spectroscopy (FT-IR), and field emission scanning electron microscopy (FE-SEM). The obtained results indicated that the styrene was grafted on the matrix of ETFE polymer by the π bond-breaking reaction which could be attributed to free radicals and formed the polystyrene chain at the surfaces of crystalline phases. The styrene migrated deep into the membrane due to the concentration gradient. The grafting reactions occurred at sites of C-H and C-F in the ETFE backbone but dominantly at the C-F sites while the sulfonation took place at the para position of polystyrene. The signatures related to side (secondary) reactions and by-products were not observed in the spectra indicating that the graft polymerization and sulfonation are well-controlled.

TTKHCNQG, CVv 8

  • [1] G. Zundel (1969), Hydration structure and intermolecular interaction in polyelectrolytes.,Angewandte Chemie International Edition in English, 8(7), pp.499-509.
  • [2] Z. Su; S.L. Hsu; X. Li (1994), Spectroscopic and thermal studies of sulfonated syndiotactic polystyrene.,Macromolecules, 27(1), pp.287-291.
  • [3] I. Šmit; A. Bezjak (1981), Structural changes in the grafted copolymer polyethylene-styrene.,Polymer, 22(5), pp.590-596.
  • [4] T. Seguchi; N. Tamura (1973), Mechanism of decay of alkyl radicals in irradiated polyethylene on exposure to air as studied by electron spin resonance.,The Journal of Physical Chemistry, 77, pp.40-44.
  • [5] V.S. Ivanov (1992), Radiation chemistry of polymers.,New Concepts in Polymer Science, 37, pp.49-60.
  • [6] A. Chapiro (1979), Radiation induced polymerization.,Radiation Physics and Chemistry (1977), 14, pp.101-116.
  • [7] K. Enomoto (2011), Degradation manner of polymer grafts chemically attached on thermally stable polymer films: swelling-induced detachment of hyd-rophilic grafts f-rom hyd-rophobic polymer substrates in aqueous media.,Journal of Materials Chemistry, 21, pp.9343-9349.
  • [8] J. Chen (2006), Effect of crosslinkers on the preparation and properties of ETFE-based radiation-grafted polymer electrolyte membranes.,Journal of Applied Polymer Science, 100, pp.4565-4574.
  • [9] J. Chen (2006), Preparation and c-haracterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films.,Journal of Membrane Science, 269(1-2), pp.194-204.
  • [10] P. Duvauchelle (1999), Effective atomic number in the rayleigh to Compton scattering ratio.,Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 155(3), pp.221-228.
  • [11] J.H. Hubbell (2006), Electron-positron pair production by photons: a historical overview.,Radiation Physics and Chemistry, 75(6), pp.614-623.
  • [12] J. Weber; D.J. Van Den Berge (1969), The effective atomic number and the calculation of the composition of phantom materials.,The British Journal of Radiology, 42(497), pp.378-383.
  • [13] A.S. Brar; S.K. Hekmatyar (2001), C-haracterization of styrene/methacrylic acid copolymers by 2D‐NMR spectroscopy.,Journal of Applied Polymer Science, 82, pp.2444-2453.
  • [14] T.K. Kwei (1993), Solid-state NMR analysis of blends of nylon 6 and zinc salts of sulfonated polystyrene ionomers.,Macromolecules, 26, pp.6583-6588.
  • [15] M.J. Cánovas (2006), Proton mobility in hydrated sulfonated polystyrene: NMR and impedance studies.,Journal of Membrane Science, 280, pp.461-469.
  • [16] J. Li (2004), Pre-irradiation induced grafting of styrene into crosslinked and non-crosslinked polytetrafluoroethylene films for polymer electrolyte fuel cell applications. I: Influence of styrene grafting conditions.,European Polymer Journal, 40, pp.775-783.
  • [17] J.R. Varcoe (2007), Poly (ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells.,Chemistry of Materials, 19, pp.2686-2693.
  • [18] K. Yoshimura (2014), Imidazolium cation based anion-conducting electrolyte membranes prepared by radiation induced grafting for direct hydrazine hydrate fuel cells.,Journal of the Electrochemical Society, 161, pp.889-893.
  • [19] K. Jetsrisuparb (2014), Proton conducting membranes prepared by radiation grafting of styrene and various comonomers.,European Polymer Journal, 53, pp.75-89.
  • [20] B. Mattsson (1999), Micro-raman investigations of PVDF-based proton‐ conducting membranes.,Journal of Polymer Science Part A: Polymer Chemistry, 37, pp.3317-3327.
  • [21] B. Mattsson (2000), Degradation of a fuel cell membrane, as revealed by micro-raman spectroscopy.,Electrochimica Acta, 45(8-9), pp.1405-1408.
  • [22] T.D. Tap (2015), Study of lamellar structures of graft-type fluorinated proton exchange membranes by small-angle X-ray scattering: preparation procedures and grafting degree dependence for fuel application.,Science and Technology Development Journal, 18, pp.153-161.
  • [23] T.D. Tap (2018), Humidity and temperature effects on mechanical properties and conductivity of graft-type polymer electrolyte membrane.,Radiation Physics and Chemistry, 151, pp.186-191.
  • [24] T.T. Duy (2013), Poly (ethylene-co-tetrafluoroethylene)(ETFE)-based graft-type polymer electrolyte membranes with different ion exchange capacities: relative humidity dependence for fuel cell applications.,Journal of Membrane Science, 447, pp.19-25.
  • [25] T.D. Tap (2014), Hierarchical structure-property relationships in graft-type fluorinated polymer electrolyte membranes using small-and ultrasmall-angle x-ray scattering analysis.,Macromolecules, 47, pp.2373-2383.
  • [26] H.A. Zen (2013), Effect of radiation induced crosslinking and degradation of ETFE films.,Radiation Physics and Chemistry, 84, pp.136-139.
  • [27] D. Sebastian; V. Baglio (2017), Advanced materials in polymer electrolyte fuel cells.,Materials, 10, DOI: 10.3390/ma10101163.
  • [28] D. Brandell (2007), Molecular dynamics studies of the Nafion®, Dow® and Aciplex® fuel-cell polymer membrane systems.,Journal of Molecular Modeling, 13, pp.1039-1046.
  • [29] A. Veziroglu; R. Macario (2011), Fuel cell vehicles: state of the art with economic and environmental concerns.,International Journal of Hydrogen Energy, 36, pp.25-43.
  • [30] Y. Wang (2020), Materials, technological status, and fundamentals of PEM fuel cells - a review.,Materials Today, 32, pp.178-203.
  • [31] B. Smitha (2005), Solid polymer electrolyte membranes for fuel cell applications - a review.,Journal of Membrane Science, 259, pp.10-26.