Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  30,358,688
  • Công bố khoa học và công nghệ Việt Nam

Khoa học máy tính

Trần Như Ý, Nguyễn Viết Hưng, Nguyễn Quốc Huy, Phạm Thế Bảo, NGUYỄN VIẾT HƯNG(1)

Phân đoạn ảnh và ncuts

Image segmentation and ncuts

Tạp chí Khoa học - Đại học Sư phạm TP Hồ Chí Minh

2021

6

1100-1112

1859-3100

Trong nhiều thập kỉ qua, nhiều công trình nghiên cứu khoa học đóng góp không ngừng trong lĩnh vực thị giác máy tính nói chung cũng như nghiên cứu phân đoạn ảnh nói riêng. Trong đó, phân đoạn ảnh là quá trình tiền xử lí quan trọng trong hầu hết các ứng dụng xử lí ảnh. Chúng tôi tóm tắt và đánh giá các kĩ thuật phân đoạn ảnh và phân chia các kĩ thuật này thành các nhóm gồm: kĩ thuật dựa trên phát hiện cạnh/biên, kĩ thuật phân ngưỡng, phương trình vi phân, phương pháp gom nhóm, kĩ thuật dựa trên phân hoạch đồ thị. Tiếp theo, chúng tôi trình bày ưu điểm và khuyết điểm của thuật toán Ncuts, là thuật toán kinh điển khá phổ biến trong phân đoạn ảnh dựa trên đồ thị. Thuật toán Ncuts (Shi, & Malik, 2000) được đưa ra năm 2000 nhưng đã được áp dụng thành công và cho kết quả tối ưu cho nhiều ứng dụng xử lí ảnh cũng như các ứng dụng khoa học kĩ thuật.

In the past decades, many studies have been conducted in computer vision and image segmentation. Image segmentation is the process of image preprocessing in most image processing applications. We summarize and evaluate image segmentation techniques and categorize them, including edge detection, thresholding, partial differential equation, clustering, and graph-based. Next, we present the pros and cons of the Ncuts algorithm, which is typical of graph-based image segmentation. The Ncuts algorithm was introduced in 2000 and showed optimal results for image processing and other applications.

TTKHCNQG, CTv 138

  • [1] Zhu, H., Zhang, J., Xu, G., & Deng, L. (2021), Tensor Field Graph-Cut for Image Segmentation: A Non-Convex Perspective,IEEE Transactions on Circuits and Systems for Video Technology, 31(3), 1103-1113.
  • [2] Zhang, L., Zhang, D., & Peng, B. (2013), A survey of graph theoretical approaches to image segmentation.,Pattern Recognition, 46(3), 1020-1038.
  • [3] Zaitoun, N. M., & Aqel, M. J. (2015), Survey on Image Segmentation Techniques. International Conference on Communication,Management and Information Technology (ICCMIT 2015), 797-806.
  • [4] Yang, X., Shen, X., Long, J., & Chen, H. (2012), An Improved Median-based Otsu Image Thresholding Algorithm.,AASRI Procedia, 3, 468-473.
  • [5] Weickert, J. (2001), Efficient image segmentation using partial differential equations and morphology.,Pattern Recognition, 34(9), 1813-1824.
  • [6] Wang, C., Lin, X., & Chen, C. (2019), Gravel Image Auto-Segmentation Based on an Improved Normalized Cuts Algorithm,Journal of Applied Mathematics and Physics, 7(3).
  • [7] Wang, S., & Siskind, J. M. (2003), Image Segmentation with Ratio Cut. Pattern Analysis and Machine Intelligence,IEEE Trans., 25(6), 675-690
  • [8] Wang, C., Oda, M., Hayashi, Y., Yoshino, Y., Yamamoto, T., Frangi, A. F., & Mori, K. (2020), Tensorcut: A tensor-based graph-cut blood vessel segmentation method and its application to renal artery segmentation.,Medical Image Analysis, 60.
  • [9] Wang, S., & Siskind, J. M. (2001), Image Segmentation with Minimum Mean Cut.,IEEE International Conference on Computer Vision (ICCV 2001), 1, 517-524.
  • [10] Wang, J., Kong, J., Lu, Y., Qi, M., & Zhang, B. (2008), A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints,Computerized Medical Imaging and Graphics, 8, 685-698.
  • [11] Wang, Z., Jensen, J. R., & Im, J. (2010), An automatic region-based image segmentation algorithm for remote sensing applications,Environmental Modelling & Software, 25, 1149-1165.
  • [12] Shi, J., & Malik, J. (2000), Normalized cuts and Image Segmentation. Pattern Analysis and Machine Intelligence.,IEEE Trans., 22, 888-905
  • [13] Sezgin, M., & Sankur, B. (2004), Survey over image thresholding techniques and quantitative performance evaluation.,Journal of Electronic Imaging, 13(1), 146-165.
  • [14] Senthilkumaran, N. & Rajesh, R. (2009), Edge Detection Techniques for Image Segmentation A Survey of Soft Computing Approaches,International Journal of Recent Trends in Engineering, 1(2).
  • [15] Ruthotto, L., & Haber, E. (2020), Deep Neural Networks Motivated by Partial Differential Equations,Journal of Mathematical Imaging and Vision, 62, 352-364.
  • [16] Misal, A., & Singh, M. (2013), A survey paper on various visual image segmentation techniques.,International Journal of Computer Science and Management Research, 2.
  • [17] Manic, K. S., Priya, R. K., & Rajinikanth, V (2016), Image Multithresholding based on Kapur/Tsallis Entropy and Firefly Algorithm.,Indian Journal of Science and Technology, 9(12).
  • [18] Luo, S., Tai, X. Ch., Huo, L., Wang, Y., & Glowinski, R. (2019), Convex Shape Prior for Multi-object Segmentation Using a Single Level Set Function.,Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 613-621
  • [19] Kouhi, A., Seyedarabi, H., & Aghagolzadeh, A (2020), Robust FCM clustering algorithm with combined spatial constraint and membership matrix local information for brain MRI segmentation.,Expert Systems with Applications, 146.
  • [20] Kirti, & Bhatnagar, A. (2017), Image Segmentation Using Canny Edge Detection Technique.,International Journal of Techno-Management Research, 4(4).
  • [21] Khairuzzaman, A. K. M., & Chaudhury, S. (2017), Multilevel thresholding using grey wolf optimizer for image segmentation,Expert Systems with Applications, 86, 64-76.
  • [22] Kamil, M. Y., & Salih, A. M. (2019), Mammography Images Segmentation via Fuzzy C-mean and K-mean.,International Journal of Intelligent Engineering and Systems, 12(1).
  • [23] Jain, A. K., Prabhakar, S., Member, S., & Hong, L. (1999), A Multichannel Approach to Fingerprint Classification.,IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4), 348-359.
  • [24] Huttenlocher, D. P., & Felzenszwalb, P. F. (2004), Efficient graph based image segmetnation.,International Journal of Computer Vision, 59(2), 167-181
  • [25] Huang, H., Meng, F., Zhou, S., Jiang, F., & Manogaran, G. (2019), Brain Image Segmentation Based on FCM Clustering Algorithm and Rough Set,IEEE Access, 7, 12386-12396.
  • [26] Hoang, N. D., & Nguyen, Q. L. (2018), Metaheuristic Optimized Edge Detection for Recognition of Concrete Wall Cracks: A Comparative Study on the Performances of Roberts, Prewitt, Canny, and Sobel Algorithms,Advances in Civil Engineering, 2018
  • [27] Hawas, A. R., Guo, Y., Du, C., Polat, K., & Ashour, A. S. (2020), OCE-NGC: A neutrosophic graph cut algorithm using optimized clustering estimation algorithm for dermoscopic skin lesion segmentation.,Applied Soft Computing, 86
  • [28] Guo, F., Ng, M., Goubran, M., Petersen, S. E., Piechnik, S. K., Neubauer, S., & Wright, G. (2020), Improving cardiac MRI convolutional neural network segmentation on small training datasets and dataset shift: A continuous kernel cut approach,Medical Image Analysis, 61.
  • [29] Golub, G. H. & Loan, C. F. V (2013), Matrix Computations.,John Hopkins University Press.
  • [30] Ganesan, P., & Sajiv, G. (2017), A comprehensive study of edge detection for image processing applications.,International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS 2017), 2018, 1-6.
  • [31] Dimauro, G., & Simone, L. (2020), Novel Biased Normalized Cuts Approach for the Automatic Segmentation of the Conjunctiva.,MDPI Multidisciplinary Digital Publishing Institute, 9(6).
  • [32] Ding, Y., & Fu, X. (2016), Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm,Neurocomputing, 188, 233-238.
  • [33] Dhankhar, P., & Sahu, N. (2013), A Review and Research of Edge Detection Techniques for Image Segmentation,International Journal of Computer Science and Mobile Computing, 2(7), 86-92.
  • [34] Dass, R., Priyanka, & Devi, S. (2012), Image Segmentation Techniques,International Journal on Electronics & Communication Technology, 3(1).
  • [35] Chen, Y., Zhang, H., Zheng, Y., Jeon, B., & Wu, Q. M. J. (2016), An improved anisotropic hierarchical fuzzy c-means method based on multivariate student t-distribution for brain MRI segmentation,Pattern Recognition, 60, 778-792.
  • [36] Cheng, H. D., Jiang, X. H., Sun, Y., & Wang, J. L. (2001), Color image segmentation: advances and prospects,Pattern Recognition, 34, 2259-2281
  • [37] Chandra, S. K., & Bajpai, M. K. (2019), Mesh free al-ternate directional implicit method based three dimensional super-diffusive model for benign brain tumor segmentation.,Computers & Mathematics with Applications, 77(12), 3212-3223.
  • [38] Bezdek, J. C. (2013), Pattern Recognition with Fuzzy Objective Function Algorithms,Springer Science & Business Media
  • [39] Bejar, H. H. C., Guimaraes, S. J., & Miranda, P. A. V. (2020), Efficient hierarchical graph partitioning for image segmentation by optimum oriented cuts,Pattern Recognition Letters, 131, 185-192.
  • [40] Bai, X., Zhang, Y., Liu, H., & Chen, Z. (2019), Similarity Measure-Based Possibilistic FCM with Label Information for Brain MRI Segmentation,IEEE Transactions on Cybernetics, 49, 2618-2630.
  • [41] Almotiri, J., Elleithy, K., & Elleithy, A. (2018), Retinal Vessels Segmentation Techniques and Algorithms: A Survey,Applied Science, MDPI, 8(2).