



- Công bố khoa học và công nghệ Việt Nam
Khoa học tự nhiên
BB
Nguyễn Hoàng Vũ, Đào Ngọc Bích, Trần Thanh Hương, Phạm Minh Triển(1)*
Sử dụng mô hình học sâu dự đoán hàm lượng vi chất của thực phẩm sau chế biến
Using deep learning model to predict micronutrients in food after processing
Tạp chí Khoa học và Công nghệ Việt Nam - B
2024
6B
1
- [1] P. Ma, Z. Zhang, Y. Li, et al. (2022), Deep learning accurately predicts food categories and nutrients based on ingredient statements,Food Chemistry
- [2] D.B. Haytowitz, J.K.C. Ahuja, X. Wu, et al. (2019), USDA national nutrient database for standard reference, legacy release,Nutrient Data Laboratory
- [3] J.C. Moubarac, D.C. Parra, G. Cannon, et al. (2014), Food classification systems based on food processing: Significance and implications for policies and actions: A systematic literature review and assessment,Current Obesity Reports
- [4] G. Menichetti, B. Ravandi, D. Mozaffarian, et al. (2022), Machine learning prediction of food processing,medRxiv
- [5] P. Ma, A. Li, N. Yu, et al. (2021), Application of machine learning for estimating label nutrients using USDA Global Branded Food Products Database (BFPD),Journal of Food Composition and Analysis
- [6] G. Ispirova, T. Eftimov, B.K. Seljak (2021), Domain heuristic fusion of multi-word embeddings for nutrient value prediction,Mathematics
- [7] G. Ispirova, T. Eftimov, B.K. Seljak (2020), P-NUT: Predicting NUTrient content f-rom short text descriptions,Mathematics
- [8] B.S. Lengeling, J.N. Wei, B.K. Lee, et al. (2019), Machine learning for scent: Learning generalizable perceptual representations of small molecules,arXiv
- [9] R. Tuwani, S. Wadhwa, G. Bagler (2019), BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules,Scientific Reports
- [10] M. Zhong, Y. Chong, X. Nie, et al. (2013), Prediction of sweetness by multilinear regression analysis and support vector machine,Journal of Food Science
- [11] P. C-haroenkwan, C. Nantasenamat, M.M. Hasan, et al. (2021), BERT4Bitter: A bidirectional encoder representations f-rom transformers (BERT)-based model for improving the prediction of bitter peptides,Bioinformatics
- [12] A.D. Wiener, I. Nissim, N.B. Abu, et al. (2017), Bitter or not? BitterPredict, a tool for predicting taste f-rom chemical structure,Scientific Reports
- [13] B. Ling, J. Tang, F. Kong, et al. (2015), Kinetics of food quality changes during thermal processing: A review,Food and Bioprocess Technology
- [14] (2007), USDA Table of Nutrient Retention Factors, Release 6,
- [15] E. Capuano, T. Oliviero, M.A.J.S.V. Boekel (2023), Modeling food matrix effects on chemical reactivity: Challenges and perspectives,Critical Reviews in Food Science and Nutrition