Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,505,276
  • Công bố khoa học và công nghệ Việt Nam

Khoa học kỹ thuật và công nghệ

BB

Nguyễn Quốc Trung, Nguyễn Anh Thư, Trịnh Thiên, Phạm Ngọc Thạch, Lê Hữu Thọ*, Võ Quốc Khương(1)*

Nghiên cứu tổng hợp xanh hóa nano bạc từ cao chiết cây Cúc leo (Mikania micrantha Kunth)

Environmentally friendly synthesis of silver nanoparticles using Mikania micrantha Kunth extract

Tạp chí Khoa học và Công nghệ Việt Nam - B

2025

1B

67

Trong nghiên cứu này, hạt nano bạc được tổng hợp xanh hóa với cao chiết cây Cúc leo (Mikania micrantha Kunth) có vai trò là tác nhân khử tiền chất bạc nitrate và polyvinyl pyrrolidone (PVP) là chất ổn định. Các yếu tố ảnh hưởng đến sự hình thành và phát triển của hạt nano bao gồm nồng độ bạc nitrate, nồng độ cao chiết và thời gian phản ứng được khảo sát với mục tiêu tạo ra hạt nano bạc có hình dạng và kích thước mong muốn. Điều kiện thích hợp để tổnghợp nano bạc từ cao chiết cây Cúc leo bao gồm: nồng độ AgNO3 0,030 M, nồng độ cao chiết là 2,50 mg/ml, thời gian phản ứng là 90 phút tại nhiệt độ phòng. Thông qua kết quả quang phổ - tử ngoại khả kiến (UV-Vis), kính hiển vi điện tử truyền qua (TEM), kính hiển vi điện tử truyền qua phân giải cao (HR-TEM), kính hiển vi điện tử quét (SEM), phổ phân tán năng lượng tia X (EDS), tán xạ ánh sáng động (DLS) và thế zeta cho thấy đã tổng hợp thành công hạt nano bạc có dạng cầu, kích thước trung bình khoảng 47,1 nm. Nano bạc được tổng hợp từ cao chiết cây Cúc leo thân thiện với môi trường hứa hẹn sẽ mang lại nhiều tiềm năng ứng dụng trong tương lai.

In this study, the synthesis of silver nanoparticles using a reduction method that incorporated Mikania micrantha Kunth extract as a natural reducing agent, alongside polyvinylpyrrolidone (PVP) for stabilisation purposes. Key factors that influence the size and morphology of the nanoparticles, including the concentrations of silver nitrate, extract concentration, and reaction time, were investigated with the goal of producing Ag nanoparticles with the desired shape and size. Optimal conditions for synthesising the silver nanoparticles from Mikania micrantha Kunth extract include using an AgNO3 concentration of 0.030 M, an extract concentration of 2.50 mg/ml, and a reaction time of 90 minutes at room temperature. The results obtained from ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), and zeta potential analysis, silver nanoparticles were successfully produced with an average size of about 47.1 nm. The silver nanoparticles synthesised from Mikania micrantha Kunth are environmentally friendly and have promising applications for future developments in nanotechnology.

  • [1] P.P.H. But, Z.D. He, S.C. Ma, et al. (2009), Antiviral constituents against respiratory viruses f-rom Mikania micrantha,Journal of Natural Products
  • [2] K. Anandalakshmi, J. Venugobal, V.J.A.N. Ramasamy, et al. (2016), C-haracterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity,Applied Nanoscience
  • [3] M. Danaei, M. Dehghankhold, S. Ataei, et al. (2018), Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems,Pharmaceutics
  • [4] C.S. Lopes, V.M. Lenart, R.F. Turchiello, et al. (2018), Determination of the thermal diffusivity of plasmonic nanofluids containing PVP-coated Ag nanoparticles using mode-mismatched dual-beam thermal lens technique,Advances in Condensed Matter Physics
  • [5] E.Y. Ahn, H. Jin, Y. Park, et al. (2019), Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts,Materials Science and Engineering: C
  • [6] J. Stetefeld, S.A. McKenna, T.R. Patel, et al. (2016), Dynamic light scattering: A practical guide and applications in biomedical sciences,Biophysical Reviews
  • [7] D.A. Selvan, D. Mahendiran, R.S. Kumar, et al. (2018), Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies,Journal of Photochemistry and Photobiology B: Biology
  • [8] Y.S. Rao, V.S. Kotakadi, T.N.V.K.V. Prasad, et al. (2013), Green synthesis and spectral c-haracterization of silver nanoparticles f-rom Lakshmi tulasi (Ocimum sanctum) leaf extract,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
  • [9] R. Zein, I. Alghoraibi, C. Soukkarieh, et al. (2020), In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus Camaldulensis leaves,Heliyon
  • [10] E.R. León, R.I. Palomares, R.E. Navarro, et al. (2013), Synthesis of silver nanoparticles using reducing agents obtained f-rom natural sources (Rumex hymenosepalus extracts),Nanoscale Research Letters
  • [11] S. Khorrami, A. Zarrabi, M. Khaleghi, et al. (2018), Se-lective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties,International Journal of Nanomedicine
  • [12] J. Venkatesan, S.K. Singh, S. Anil, et al. (2018), Preparation, c-haracterization and biological applications of biosynthesized silver nanoparticles with chitosan-fucoidan coating,Molecules
  • [13] J.M. Ashraf, M.A. Ansari, H.M. Khan, et al. (2016), Green synthesis of silver nanoparticles and c-haracterization of their inhibitory effects on AGEs formation using biophysical techniques,Scientific Reports
  • [14] A. Rautela, J. Rani (2019), Green synthesis of silver nanoparticles f-rom Tectona grandis seeds extract: C-haracterization and mechanism of antimicrobial action on different microorganisms,Journal of Analytical Science and Technology
  • [15] A. Zohmachhuana, M. Tlaisun, V. Mathipi, et al. (2022), Suppression of the RAGE gene expression in RAW 264.7 murine leukemia cell line by ethyl acetate extract of Mikania micrantha (L.) Kunth,Journal of Applied Biology and Biotechnology
  • [16] A. Masyita, R.M. Sari, A.D. Astuti, et al. (2022), Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives,Food Chemistry: X
  • [17] V. Koleckar, K. Kubikova, Z. Rehakova, et al. (2008), Condensed and hydrolysable tannins as antioxidants influencing the health,Mini Reviews in Medicinal Chemistry
  • [18] W. Ngwa, R. Kumar, D. Thompson, et al. (2020), Potential of flavonoid-inspired phytomedicines against COVID-19,Molecules
  • [19] T. Mehany, I. Khalifa, H. Barakat, et al. (2021), Polyphenols as promising biologically active substances for preventing SARS-CoV-2: A review with research evidence and underlying mechanisms,Food Bioscience
  • [20] N.T.T. Mai (2020), Testing Medicinal Herbs,
  • [21] A. Biswas, C. Vanlalveni, P.P. Adhikari, et al. (2019), Biosynthesis, c-haracterisation and antibacterial activity of Mikania micrantha leaf extract-mediated AgNPs,Micro & Nano Letters
  • [22] M.D. Day, D.R. Clements, C. Gile, et al. (2016), Biology and impacts of Pacific Islands invasive species. 13. Mikania micrantha Kunth (Asteraceae),Pacific Science
  • [23] A. Li, X. Hou, Y. Wei (2018), Fast screening of flavonoids f-rom switchgrass and Mikania micrantha by liquid chromatography hybrid-ion trap time-of-flight mass spectrometry,Analytical Methods
  • [24] H. Huang, W. Ye, X. Wei, et al. (2008), Allelopathic potential of sesquiterpene lactones and phenolic constituents f-rom Mikania micrantha HBK,Biochemical Systematics and Ecology
  • [25] X. Wei, H. Huang, P. Wu, et al. (2004), Phenolic constituents f-rom Mikania micrantha,Biochemical Systematics and Ecology
  • [26] T. Triet, N.P. Nga, N.T.L. Thi, et al. (2018), Weed Species Common in Vietnam’s Environment,
  • [27] B.O. Liu, J. Yan, W. Li, et al. (2020), Mikania micrantha genome provides insights into the molecular mechanism of rapid growth,Nature Communications
  • [28] D. Bhattac-harya, R.K. Gupta (2005), Nanotechnology and potential of microorganisms,Critical Reviews in Biotechnology
  • [29] J. He, T. Kunitake, A. Nakao (2003), Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibres,Chemistry of Materials
  • [30] M.G. Guzmán, J. Dille, S. Godet (2009), Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity,International Journal of Chemical and Molecular Engineering
  • [31] K.C. Song, S.M. Lee, T.S. Park, et al. (2009), Preparation of colloidal silver nanoparticles by chemical reduction method,Korean Journal of Chemical Engineering
  • [32] L.P. Silva, I.G. Reis, C.C. Bonatto (2015), Green synthesis of metal nanoparticles by plants: Current trends and challenges,Green Processes for Nanotechnology: F-rom Inorganic to Bioinspired Nanomaterials
  • [33] V. Kumar, S.C. Yadav, S.K. Yadav (2010), Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their c-haracterization,Journal of Chemical Technology & Biotechnology
  • [34] M. Saravanan, A.K. Vemu, S.K. Barik (2011), Rapid biosynthesis of silver nanoparticles f-rom Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens,Colloids and Surfaces B: Biointerfaces
  • [35] M. Saravanan, A. Nanda (2010), Extracellular synthesis of silver bionanoparticles f-rom Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE,Colloids and Surfaces B: Biointerfaces
  • [36] R.I. Barbhuiya, P. Singha, N. Asaithambi, et al. (2022), Ultrasound-assisted rapid biological synthesis and c-haracterization of silver nanoparticles using pomelo peel waste,Food Chemistry