



- Công bố khoa học và công nghệ Việt Nam
Hoá lý
Nguyễn Minh Quang, Trần Nguyễn Minh Ân(1), Phạm Văn Tất(2), Bùi Thị Phương Thúy, Nguyễn Thành Được
Tính toán hằng số bền của các phức chất mới giữa thiosemicarbazone và ion kim loại dựa trên mô hình hóa QSPR sử dụng phương pháp MLR và ANN
Calculation of stability constants of new metal-thiosemicarbazone complexes based on the QSPR modeling using MLR and ANN methods
Khoa học (Đại học Đồng Tháp)
2021
5
31-45
0866-7675
Trong nghiên cứu này, hằng số bền (logβ11) của 28 phức chất mới giữa một số ion kim loại và phối tử thiosemicarbazone được dự đoán dựa trên mô hình hóa mối quan hệ định lượng giữa tính chất-cấu trúc (QSPR). Hằng số bền được tính toán từ kết quả các mô hình QSPR. Các mô hình QSPR được xây dựng bằng cách sử dụng phương pháp hồi quy đa biến (QSPRMLR) và mạng thần kinh nhân tạo (QSPRANN). Các mô tả phân tử, hóa lý và lượng tử của các phức chất được tính toán từ cấu trúc hình học phân tử và phương pháp lượng tử bán thực nghiệm PM7 và PM7/sparkle. Mô hình tuyến tính tốt nhất QSPRMLR bao gồm năm mô tả: Total energy, xch6, xp10, SdsN và Maxneg. Chất lượng của mô hình QSPRMLR được đánh giá qua các giá trị thống kê như R2train = 0,860, Q2LOO = 0,799, SE = 1,242, Fstat = 54,14 và PRESS = 97,46. Mô hình mạng thần kinh QSPRANN với kiến trúc I(5)-HL(9)-O(1) được tìm thấy với các giá trị thống kê: R2train = 0,8322, Q2CV = 0,9935 và Q2test = 0,9105. Ngoài ra, các mô hình QSPR này đã được đánh giá ngoại và cho kết quả tốt so với các giá trị thực nghiệm. Hơn nữa, kết quả từ các mô hình QSPR có thể được sử dụng để dự đoán hằng số bền của các phức chất giữa ion kim loại và thiosemicarbazone mới khác.
In this study, the stability constants (logb11) of twenty-eight new complexes between several ion metals and thiosemicarbazone ligands were predicted on the basis of the quantitative structure property relationship (QSPR) modeling. The stability constants were calculated from the results of the QSPR models. The QSPR models were built by using the multivariate least regression (QSPRMLR) and artificial neural network (QSPRANN). The molecular descriptors, physicochemical and quantum descriptors of complexes were generated from molecular geometric structure and semi-empirical quantum calculation PM7 and PM7/sparkle. The best linear model QSPRMLR involves five descriptors, namely Total energy, xch6, xp10, SdsN, and Maxneg. The quality of the QSPRMLR model was validated by the statistical values that were R2train = 0.860, Q2LOO = 0.799, SE = 1.242, Fstat = 54.14 and PRESS = 97.46. The neural network model QSPRANN with architecture I(5)-HL(9)-O(1) was presented with the statistical values: R2train = 0.8322, Q2CV = 0.9935 and Q2test = 0.9105. Also, the QSPR models were evaluated externally and achieved good performance results with those from the experimental literature. In addition, the results from the QSPR models could be used to predict the stability constants of other new metal-thiosemicarbazones.
TTKHCNQG, CVv 392
- [1] Yee, L. C. and Wei, Y. C. (2012), Statistical Modelling of Molecular Descriptors in QSAR/QSPR, chapter 1: Current Modeling Methods Used in QSAR/QSPR,German: Wiley-VCH Verlag GmbH & Co. KgaA
- [2] (2016), XLSTAT Version 2016.02.28451 (2016). USA: Addinsoft,
- [3] Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., and Alkon, D. L. (1988), Accelerating the convergence of the backpropagation method,Biological Cybernetics, 59, 257-263
- [4] Toribio, F., Fernandez, J. M. L., Bendito, D. P., and Valcárcel, M. (1980), 2 2’- dihydroxybenzophenone thiosemicarbazone as a spectrophotometric Reagent for the determination of copper, cobalt, nickel, and iron trace amounts in mixtures without previous separations,Microchemical Journal, 25, 338-347
- [5] Sudeshna, G. and Parimal, K. (2010), Multiple non-psychiatric effects of phenothiazines: A review,European Journal of Pharmacology, 648(1-3), 6-14
- [6] Stewart, J. J. P. (2002), MOPAC2016, Version: 17.240W,Stewart Computational Chemistry, USA
- [7] Steppan, D. D., Werner, J., and Yeater, P. R. (1998), Essential Regression and Experimental Design for Chemists and Engineers,Free Software Package. http://home.tonline.de/home/jowerner98/indexeng.html
- [8] Sawhney, S. S., and Sati, R. M. (1983), pHmetric studies on Cd(II)-, Pb(II)-, AI(III)-, Cr(III)- and Fe(III)-p-nitrobenzaldehyde thiosemicarbazone systems,Thermochimica Acta, 66, 351-355
- [9] Sawhney, S. S., and Chandel, S. K. (1984), Stability and thermodynamics of La(III)-, Pr(III)-, Nd(III)- Gd(III)- and Eu(III)-pnitrobenzaldehyde thiosemicarbazone systems,Thermochimica Acta, 72, 381-385
- [10] Sawhney, S. S., and Chandel, S. K. (1983), Solution chemistry of Cu(II)-, Co(II)-, Ni(II)-, Mn(II)- and Zn(II)-p aminobenzaldehyde thiosemicarbazone systems,Thermochimica Acta, 71, 209-214
- [11] Sarkar K., and Garg, B. S. (1987), Determination of thermodynamic parameters and stability constants of the complexes of p-MITSC with transition metal ions,Thermochimica Acta, 113, 7-14
- [12] Sahadev, M., Sharma, R. K., and Sindhwani, S. K. (1992), Thermal studies on the chelation behaviour of biologically active 2-hydroxy1-naphthaldehyde thiosemicarbazone (HNATS) towards bivalent metal ions: a potentiometric study,Thermochimica Acta, 202, 291-299
- [13] Rojas, R. (1996), Neural Networks,Berlin: Springer-Verlag
- [14] Rogolino, D., Cavazzoni, A., Gatti, A., Tegoni, M., Pelosi, G., Verdolino, V., Fumarola, C., Cretella, D., Petronini, P.G., and Carcelli, M. (2017), Anti-proliferative effects of copper (II) complexes with Hydroxyquinoline-Thiosemicarbazone ligands,Eu. J. Med. Chem., 128, 140-153
- [15] Reddy, N. S. R., and Reddy, D. V. (1983), Spectrophotometric determination of vanadium (V) with salicylaldehyde thiosemicarbazone,J. Indian. Inst. Sci., 64(B), 133-136
- [16] Reddy, K. V., Babu, S. V. and Reddy, K. H. (2011), Spectrophotometric Determination of Copper(II) in Biological Samples by Using 2-Acetylfuran Thiosemicarbazone as Chelating Reagent,Asia. J. Chem., 23(10), 4425-4429
- [17] Reddy, K. H., and Prasad, N. B. L. (2004), Spectrophotometric determination of copper (II) in edible oils and seed using novel oxime-thiosemicarbazones,India J. Chem., 43A, 111-114
- [18] (20014), QSARIS 1.1. (2001). USA: Statistical Solutions Ltd.,
- [19] Pyrzynska, K. (2007), Determination of molybdenum in environmental samples,Anal. Chim. Acta, 590, 40-48
- [20] Pham Van Tat (2009), Development of QSAR and QSPR,Ha Noi: Publisher of Natural Sciences and Technique
- [21] (2007), Guidance Document on the Validation of (Quantitative) Structure– Activity Relationships Models,France: Organisation for Economic Cooperation and Development
- [22] Nagajothi, A., Kiruthika, A., Chitra, S., and Parameswari, K. (2013), Fe(III) Complexes with Schiff base Ligands: Synthesis, C-haracterization, Antimicrobial Studies,Res. J. chem. Sci., 3(2), 35-43
- [23] Milunovic, M., Enyedy, E. A., Nagy, N. V., Kiss, T., Trondl, R., Jakupec, M. A., Keppler, B. K., Krachler, R., Novitchi, G., and Arion, V. B. (2012), L- and D-Proline Thiosemicarbazone Conjugates: Coordination Behavior in Solution and the Effect of Copper(II) Coordination on Their Antiproliferative Activity,Inorg. Chem., 51, 9309-9321
- [24] (2016), Matlab R2016a 9.0.0.341360, USA: MathWorks,
- [25] Kunal, R., Supratik, K., and Rudra, N. D. (2015), A Primer on QSAR/QSPR Modeling, Fundamental Concepts,New York: Springer
- [26] Krucaite, G., and Grigalevicius, S. (2019), A review on low-molar-mass carbazole- based derivatives for organic light emitting diodes,Synthetic Metals, 247, 90-108
- [27] Krishna, D. G., and Mohan, G. V. K. (2013), A Facile Synthesis, C-haracterization of Cinnamaldehyde Thiosemicarbazone and Determination of Molybdenum (VI) by Spectrophotometry in Presence of Micellar Medium,Indian J. Appl. Res., 3(8), 7-8
- [28] Krishna, D. G., and Devi, C. K. (2015), Determination of cadmium (II) in presence of micellar medium using cinnamaldehyde thiosemicarbazone by spectrophotometry,Int. J. Green Chem. Biopro., 5(2), 28-30
- [29] Koduru, J. R., and Lee, K. D. (2014), Evaluation of thiosemicarbazone derivative as chelating agent for the simultaneous removal and trace determination of Cd(II) and Pb(II) in food and water samples,Food Chemistry, 150, 1-8
- [30] Jiménez, M. A., Luque De Castro, M. D., Valcárcel, M. (1980), Potentiometric Study of Silver (I)-Thiosemicarbazonates,Microchemical Journal, 25, 301-308
- [31] Jekyll and Minimal M. (2017), Avogadro 1.2.0,Avogadro Chemistry, USA
- [32] Huang, L., Feng, Z. L., Wang, Y. T., and Lin, L. G. (2017), Anticancer carbazole Alkaloids and coumarins f-rom Clausena plants: A review,Chinese Journal of Natural Medicines, 15(12), 881-888
- [33] Huang, L., Feng, Z. L., Wang, Y. T., and Lin, L. G. (2017), Anticancer carbazole Alkaloids and coumarins f-rom Clausena plants: A review,Chinese Journal of Natural Medicines, 15(12), 881-888
- [34] Harvey, D. (2000), Modern analytical Chemistry,Toronto: Mc.Graw Hil
- [35] Gasteiger, J., and Zupan, J. (1993), Neural Networks in Chemistry,Chiw. Inr. Ed. EngI., 32, 503-521
- [36] Garg, B. S., Ghosh, S., Jain, V. K., and Singh, P. K. (1990), Evaluation of thermodynamic parameters of bivalent metal complexes of 2-hydroxyacetophenonethiosemicarbazone (2-HATS),Thermochimica Acta, 157, 365-368
- [37] Garg, B. S., and Jain, V. K. (1989), Determination of thermodynamic parameters and stability constants of complexes of biologically active ovanillinthiosemicarbazone with bivalent metal ions,Thermochimica Acta., 146, 375-379
- [38] Gaál, A., Orgován, G., Polgári, Z., Réti, A., Mihucz V. G. Bősze . zoboszlai N. and Streli, C. (2014), Complex forming competition and in-vitro toxicity studies on the applicability of di-2-pyridylketone-4,4,- dimethyl-3-thiosemicarbazone (Dp44mT) as a metal chelator,J. Inorg. Biochem., 130, 52-58
- [39] Ezhilarasi. (2012), Synthesis C-haracterization and Application of Salicylaldehyde Thiosemicarbazone and Its Metal Complexes,Int. J. Res. Chem. Environ, 2(4), 130-148
- [40] Eg˘lencea . ahin M. Özyürek M. Apak R. and Ülküseven, B. (2018), Dioxomolybdenum (VI) complexes of Smethyl-5-bromosalicylidene-Nalkyl substituted thiosemicarbazones: Synthesis, catalase inhibition and antioxidant activities,Inor. Chimi. Acta, 469, 495-502
- [41] Casas . . Garc a-Tasende, M. S., and Sordo, J. (2000), Main group metal complexes of semicarbazones and thiosemicarbazones. A structural review,Coordination Chemistry Reviews, 209(1), 197-261
- [42] Biswas, R., Brahman, D., and Sinha. B. (2014), Thermodynamics of the complexation between salicylaldehyde thiosemicarbazone with Cu(II) ions in methanol–1,4-dioxane binary solutions,J. Serb. Chem. Soc., 79(5), 565-578.
- [43] Billo, E. J. (2007), Excel For Scientists and Engineers: Numerical Methods,USA: John Wiley and Sons, Inc
- [44] Atalay, T., and Ozkan, E. (1994), Thermodynamic studies of some complexes of 4’- morpholinoacetophenone thiosemicarbazone,Thermochimica Acta., 237, 369-374
- [45] Artelnics (2020), Neural Designer software,USA: Artificial Intelligence Techniques, Ltd
- [46] Al-Busaidi, I. J., Haque, A., Al Rasbi, N. K., and Khan, M. S. (2019), Phenothiazine-based derivatives for optoelectronic applications: A review,Synthetic Metals, 257, 116189. doi:10.1016/j.synthmet.2019.116189
- [47] Admasu, D., Reddy, D. N., and Mekonnen, K. N. (2016), Spectrophotometric determination of Cu(II) in soil and vegetable samples collected f-rom Abraha Atsbeha, Tigray, Ethiopia using heterocyclic thiosemicarbazone,SpringerPlus, 5(1169), 1-8