Sự suy thoái và chuyển đổi đất ngập nước đã được cảnh báo trong 10 năm qua, nhưng việc kiểm kê và giám sát những thay đổi này vẫn còn gặp nhiều khó khăn do thiếu khả năng tiếp cận và công nghệ. Do đó, việc trang bị cho các nhà quản lý những công cụ để phân loại và giám sát các hệ sinh thái đất ngập nước theo thời gian thực là điều cần thiết. Mục đích của nghiên cứu này là phát triển mô hình hữu ích phân loại 7 loại đất ngập nước nội địa tại Vườn quốc gia Ba Bể, tỉnh Bắc Kạn cùng các hệ sinh thái lân cận được phân loại trong hệ thống RAMSAR và MONRE (Ministry of Natural Resources and Environment – Bộ Tài Nguyên và Môi trường). Từ đó, mô hình ResU–Net (Deep Residual U–Net) sử dụng chức năng tối ưu hóa Adadelta đã được sử dụng để phân loại 7 loại đất ngập nước và 3 loại hình hệ sinh thái lân cận ở Vườn quốc gia Ba Bể, dựa trên ảnh vệ tinh Sentinel–2, với độ chính xác cao hơn 85%. Hiệu suất tốt hơn của mô hình này so với các phương pháp Random forest (RF) và Support Vector Machine (SVM) đã được chứng minh. Mô hình ResU–Net sau khi tối ưu hóa, cũng được sử dụng để lập bản đồ các khu vực đất ngập nước nội địa tại vùng núi Bắc Kạn. Mô hình này có khả năng cập nhật các kiểu đất ngập nước mới tại Việt Nam nhằm giám sát biến động đất ngập nước trong thời gian thực.