Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  30,101,000
  • Công bố khoa học và công nghệ Việt Nam

Toán học cơ bản

Lê Thanh Tùng, Trần Thiện Khải(1), Phạm Thanh Hùng, Phạm Lê Bạch Ngọc(2)

Điều kiện tối ưu và đối ngẫu cho bài toán tối ưu đa trị sử dụng đạo hàm đa trị Clarke theo hướng nón

Optimality conditions and duality for set-valued optimization in terms of cone-directed Clarke derivatives

Khoa học (ĐH Cần Thơ)

2020

CDKHTN

17-27

1859-2333

Bài báo này khảo sát bài toán đối ngẫu dạng Mond-Weir và Wolfe cho bài toán tối ưu đa trị có ràng buộc sử dụng đạo hàm đa trị Clarke theo hướng nón. Trước hết, điều kiện tối ưu cần và đủ cho bài toán tối ưu đa trị có ràng buộc sử dụng đạo hàm đa trị Clarke theo hướng nón cho lớp hàm tựa lồi nửa địa phương được khảo sát. Sau đó, bài toán đối ngẫu dạng Mond-Weir và Wolfe cho bài toán tối ưu đa trị có ràng buộc và các tính chất về đối ngẫu mạnh, đối ngẫu yếu và đối ngẫu ngược được trình bày.

This paper is to deal with Mond-Weir duality and Wolfe duality for constrained set-valued optimization problems in terms of conedirected Clarke derivatives. Firstly, necessary and sufficient optimality conditions for constrained set-valued optimizations in terms of cone-directed Clarke derivatives for the cone-semilocally convex like maps are investigated. Then, the Mond-Weir duality and Wolfe duality for a constrained set-valued optimization and their weak duality, strong duality and converse duality are considered.

TTKHCNQG, CVv 403

  • [1] Yu, G.; Kong, X. (2016), Optimality and duality in set-valued optimization using higher-order radial derivatives,Statistics, Optimization & Information Computing. 4(2): 154–162
  • [2] Tung, L.T.; Khai, T.T.; Hung, P.T.; Ngoc, P.L.B. (2019), Karush-Kuhn-Tucker optimality conditions and duality for set optimization problems with mixed constraints,Journal of Applied and Numerical Optimization. 1(3): 277–291
  • [3] Tung, L.T. (2017), Strong Karush-Kuhn-Tucker optimality conditions and duality for nonsmooth multiobjective semi-infinite programming via Michel-Penot subdifferential,Journal of Nonlinear Functional Analysis. 2017: 1–21. DOI: 10.23952/jnfa.2017.49
  • [4] Wolfe, P. (1961), A duality theorem for nonlinear programming,Quarterly of Applied Mathematics. 19(3): 239–244
  • [5] Sach, P.H.; Craven, B.D. (1991), Invexity in multifunction optimization,Numerical Functional Analysis and Optimization. 12(3–4): 383–394
  • [6] Mond, B.; Weir, T. (1981), Generalized concavity and duality. In: S. Schaible, W.T. Ziemba (Eds.), Generalized Concavity in Optimization and Economics,
  • [7] Li, S.J; Teo, K.L.; Yang X.Q. (2008), Higherorder Mond–Weir duality for set-valued optimization,Journal of Computational and Applied Mathematics. 217(2): 339–349
  • [8] Lalitha C.S.; Arora, R. (2009), Proper Clarke epiderivative in set-valued optimization,Taiwanese Journal of Mathematics. 13(6A): 1695–1710
  • [9] Lalitha, C.S.; Arora, R. (2008), Weak Clarke epiderivative in set-valued optimization,Journal of Mathematical Analysis and Applications. 342(1): 704–714
  • [10] Khan, A.A.; Tammer, C.; Zănilescu, C. (2016), SetValued Opimization,
  • [11] Jahn, J.; Khan, A.A. (2002), Generalized contingent epiderivative in set-valued optimization: Optimality conditions,Numerical Functional Analysis and Optimization. 23(7–8): 807–831
  • [12] Jahn, J. (2009), Vector Optimization,
  • [13] Corley, H.W. (1988), Optimality conditions for maximizations of set-valued functions,Journal of Optimization Theory and Application. 58(1): 1–10
  • [14] Clarke, F.H. (1983), Optimization and nonsmooth analysis,
  • [15] Chen, C.R.; Li, S.J.; Teo, K.L. (2009), Higher order weak epiderivatives and applications to duality and optimality conditions,Computers & Mathematics with Applications. 57(8): 1389–1399
  • [16] Aubin, J.P.; Frankowska, H. (1990), Set-Valued Analysis,
  • [17] Arora, R.; Lalitha, C.S, (2005), Proximal proper efficiency in set-valued optimization,Omega - The International Journal of Management Science. 33(5): 407–411
  • [18] Anh, N.L.H. (2016), Mixed type duality for setvalued optimization problems via higher-order radial epiderivatives,Numerical Functional Analysis and Optimization. 37(7): 823–838