Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  21,940,277
  • Công bố khoa học và công nghệ Việt Nam

Miễn dịch học thú y

Nguyễn Vũ Sơn, Nguyễn Hữu Nam, Bùi Trần Anh Đào(1), Bùi Thị Tố Nga(2), Nguyễn Thị Lan, Nguyễn Thị Hoa

Bệnh dịch tả lợn châu Phi - Tình hình nghiên cứu sản xuất vacxin và kinh nghiệm ứng phó của các nước

African Swine Fever: Current State in Vaccine Research and Action Experience for Effective Control f-rom Other Countries

Khoa học nông nghiệp Việt Nam

2018

12

1131-1142

2588-1299

Bệnh dịch tả lợn châu Phi (ASF) là một bệnh truyền nhiễm nguy hiểm gây sốt xuất huyết, có thể gây chết 100% các lợn mắc bệnh. ASF ban đầu xuất hiện tập trung ở các nước châu Phi, sau đó đã lan rộng ra các quốc gia thuộc Trung Âu, Đông Âu và Trung Quốc. Tại Việt Nam, ASF lần đầu phát hiện vào ngày 19/02/2019, đến 07/4/2019 đã có mặt ở 23 tỉnh thành phố, tập trung ở phía Bắc và một vài tỉnh miền Trung, dịch có xu hướng lan ra các tỉnh phía Nam. Dù hướng sản xuất vacxin nhược độc và vacxin dưới đơn vị rất triển vọng nhưng sự thiếu thông tin về sinh bệnh học của virus ASF, sự tương tác của nó với vật chủ hay đặc tính miễn dịch làm ảnh hưởng tới tiến độ sản xuất vacxin ASF. Do đó, tuân thủ nghiêm ngặt các biện pháp kiểm soát vệ sinh, an toàn sinh học là yếu tố quan trọng nhất trong việc ngăn chặn và phòng ngừa ASF hiện nay. Trong bài tổng hợp này, các thông tin về khó khăn và triển vọng trong nghiên cứu vacxin phòng bệnh cũng như kinh nghiệm ứng phó của các nước được đánh giá và thảo luận chi tiết. Đồng thời, các khuyến nghị phù hợp có thể áp dụng cho tình hình ASF trên đàn lợn Việt Nam cũng được đề xuất.

African swine fever (ASF) is a contagious viral hemorrhagic fever, that can kill up to 100% of infected pigs. ASF is originally occurred in many African countries. Currently, the ASF has spread to central and eastern European countries and China. Since its first report on 19 February 2019 to 07 April 2019, twenty three provinces/cities in the North and Middle of Vietnam have been reported with ASF incidence and tend to spread to southern provinces. Although live-attenuated vaccines and subunit vaccines may serve as promising candidates, the vaccine development against ASF has been hampered by large gaps in knowledge of the biology of ASF virus and its interaction with the hosts or immunity. Strict biosecurity remains the most crucial aspect in the control and spread of ASF between domestic pig farms. In this review, important information on dificulties and prospect for developing ASF vaccine as well as effective experience f-rom other countries were evaluated and discussed. Furthermore, the approp[riate recommendations applied to ASF situation in domestic pigs in Vietnam were provided.

TTKHCNQG, CTv 169

  • [1] (2013), African Swine Fever Disease Card.,
  • [2] Wang T., Sun Y. & Qiu H.J. (2018), African swine fever: an unprecedented disaster and challenge to China,Infect. Dis. Poverty., 7(1): 111
  • [3] (2016), African Swine Fever in Poland and Baltic Countries,
  • [4] Stone S.S. & Hess W.R. (1967), Antibody response to inactivated preparations of African swine fever virus in pigs.,Am. J. Vet. Res., 28: 475-481.
  • [5] Stone S.S., DeLay P.D. & Sharman E.C. (1968), The antibody response in pigs inoculated with attenuated African swine fever virus,Can. J. Comp. Med., 32: 455-460
  • [6] (2015), Practical Biosecurity for Pig Farmers,Smallholders and Pet Pig Keepers in Scotland.
  • [7] Sánchez-Cordón P.J., Jabbar T., Berrezaie M., Chapman D., Reis A., Sastre P., Rueda P., Goatley L. & Dixon L.K. (2017), Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninDMGF by different doses and routes,Vaccine, 36(5):707-715
  • [8] Sánchez-Cordón P.J., Chapman D., Jabbar T., Reis A.L., Goatley L., Netherton C.L., Taylor G., Montoya M. & Dixon L.K. (2017), Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fevervirus isolate OURT88/3,Antiviral Research, 138: 1-8
  • [9] Rodríguez J.M., Yáñez R.J., Almazán F., Viñuela E. & Rodriguez J.F. (1993), African Swine Fever Virus Encodes a Cd2 Homolog Responsible for the Adhesion of Erythrocytes to Infected-Cells,J. Virol., 67(9): 5312-5320
  • [10] (2019), Vietnam confirms first African swine fever cases on three farms,https://www.reuters.com/article/us-swine-fevervietnam/vietnam-confirms-first-african-swinefever-cases-on-three-farms-idUSKCN1Q80ZP. Cited 17/03/2019.
  • [11] Reis A.L., Goatley L.C., Jabbar T., Sanchez-Cordon P.J., Netherton C.L., Chapman D.A.G. & Dixon L.K. (2017), Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge,J. Virol., 30: e01428-17
  • [12] Reis A.L., Abrams C.C., Goatley L.C., Netherton C., Chapman D.G., Sanchez-Cordon P. & Dixon L.K. (2016), Deletion of African swine fever virus interferon inhibitors f-rom the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response,Vaccine, 34: 4698-4705.
  • [13] Penrith M.L., Vosloo W. (2009), Review of African swine fever: transmission, spread and control,J. S. Afr. Vet. Assoc., 80(2): 58-62.
  • [14] Penrith M.L., Thomson G.R., Bastos A.D.S. (2004), African swine fever,In: Coetzer J.A.W., Tustin R.C. (Eds.). Infectious Diseases of Livestock (Vol. 2), Oxford University Press, pp. 1087-1119.
  • [15] Oura C.A., Denyer M.S., Takamatsu H. & Parkhouse R.M. (2005), In vivo depletion of CD8 + T lymphocytes abrogates protective immunity to African swine fever virus,J. Gen. Virol, 86: 2445-2450.
  • [16] Oganesyan A.S., Petrova O.N., Korennoy F.I., Bardina N.S., Gogin A.E. & Dudnikov S.A. (2013), African swine fever in the Russian Federation: spatio-temporal analysis and epidemiological overview,Virus Res., 173(1): 204-211
  • [17] O’Donnell V., Risatti G.R., Holinka L.G., Krug P.W., Carlson J., Velazquez-Salinas L., Azzinaro P.A., Gladue D.P. & Borca M.V. (2017), Simultaneous deletion of the 9GL and UK Genes f-rom the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge,J. Virology, 91: e01760-16.
  • [18] O’Donnell V., Holinka L.G., Gladue D.P., Sanford B., Krug P.W., Lu X., Arzt J., Reese B., Carrillo C., Risatti G.R. & Borca M.V. ((2015), African swine fever virus Georgia isolate harbouring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus,J. Virology, 89: 6048-6056.
  • [19] Nguyễn Vũ Sơn, Nguyễn Hữu Nam, Bùi Trần Anh Đào, Nguyễn Thị Hương Giang, Nguyễn Thị Lan, Bùi Thị Tố Nga, Trần Minh Hải (2018), Bệnh dịch tả lợn châu Phi (African swine fever) - Tình hình dịch tễ, đặc điểm bệnh lý và chẩn đoán phân biệt,Tạp chí Khoa học Kỹ thuật Thú y, 15(7): 87-97.
  • [20] Mur L., Sánchez-Vizcaíno J.M., Fernández-Carrión E., Jurado C., Rolesu S., Feliziani F., Laddomada A. & Martínez-López B. (2017), Understanding African swine fever infection dynamics in Sardinia using a spatially explicit transmission model in domestic pig farms,Transbound. Emerg. Dis., 65(1): 123-134.
  • [21] Mulumba-Mfumu L.K., Goatley L.C., Saegerman C., Takamatsu H.H. & Dixon L.K. (2016), Immunization of African indigenous pigs with attenuated genotype I African swine fever virus OURT88/3 induces protection against challenge with virulent strains of genotype I,Transbound. Emerg. Dis., 63: e323-e327
  • [22] Montgomery R. (1921), A form of swine fever occurring in British East Africa (Kenya Colony),J. Comp. Pathol., 34: 159-191
  • [23] Monteagudo P.L., Lacasta A., López E., Bosch L., Collado J., Pina-Pedrero S., Correa- Fiz F., Accensi F., Navas M.J., Vidal E., Buston M.J., Rodríguez J.M., Gallei A., Nikolin V., Salas M.L. & Rodríguez F. (2017), BA71∆CD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities,J. Virol., 91(21): e01058-17.
  • [24] Martínez-López B., Pérez A.M., Feliziani F., Rolesu S., Mur L. & Sánchez-Vizcaíno J.M. (2015), Evaluation of the risk factors contributing to the African swine fever occurrence in Sardinia, Italy,Front. Microbiol., 6: 314
  • [25] Leitão A., Malur A., Cornelis P. & Martins C.L. (1998), Identification of a 25-aminoacid sequence f-rom the major African swine fever virus structural protein VP72 recognised by porcine cytotoxic T lymphocytes using a lipoprotein based expression system,J. Virol. Methods, 75: 113-119.
  • [26] King K., Chapman D., Argilaguet J.M., Fishbourne E., Hutet E., Cariolet R., Hutchings G., Oura C.A., Netherton C.L., Moffat K., Taylor G., Le Potier M.F., Dixon L.K. & Takamatsu H.H. (2011), Protection of European domestic pigs f-rom virulent African isolates of African swine fever virus by experimental immunisation,Vaccine, 29(28): 4593-4600.
  • [27] Jurado C., Fernández-Carrión E., Mur L., Rolesu S., Laddomada A. & Sánchez-Vizcaíno J.M. (2018), Why is African swine fever still present in Sardinia?,Transbound. Emerg. Dis., 65(2): 557-566.
  • [28] Halasa T., Botner A., Mortensen S., Christensen H., Toft N., Boklund A. (2016), Simulating the epidemiological and economic effects of an African swine fever epidemic in industrialized swine populations,Vet. Microbiol., 193: 7-16.
  • [29] Gómez-Puertas P., Rodríguez F., Oviedo J.M., Brun A., Alonso C. & Escribano J.M. (1998), The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response,Virology, 243: 461-471
  • [30] Gogin A., Gerasimov V., Malogolovkin A. & Kolbasov D. (2013), African swine fever in the North Caucasus region and the Russian Federation in years 2007-2012,Virus Res., 173: 198-203.
  • [31] Ge S., Li J., Fan X., Liu F., Li L., Wang Q., Ren W., Bao J., Liu C., Wang H., Liu Y., Zang Y., Xu T., Wu X. & Wang Z. (2018), Molecular c-haracterization of African swine fever virus, China, 2018,Emerg. Infect. Dis., 24(11): 2131-2133.
  • [32] Gallardo C., Soler A., Rodze I., Nieto R., Cano-Gómez C., Fernandez-Pinero J. & Arias M. (2019), Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017,Transbound. Emerg. Dis., 2019 Jan 22. doi: 10.1111/tbed.13132. [Epub ahead of print].
  • [33] (2019), ASF situation in Asia up-date,http://www.fao.org/ag/againfo/programmes/en/empr es/ASF/Situation_up-date.html. Cited 26/03/2019
  • [34] (2017), African swine fever: detection and diagnosis - a manual for veterinarians,FAO Animal Product Health Manual 19: 1-92.
  • [35] (2010), Good practices for biosecurity in the pig sector. Issues and options in developing and transition countries,FAO Animal Product Health, 169: 1-89.
  • [36] (2017), Do Not Bring African Swine Fever into Finland,
  • [37] (2010), Scientific opinion on African swine fever,EFSA J 8(3):1556.10.2903/j.efsa.2010.1556.
  • [38] (2002), Council Directive 2002/60/EC of 27 June 2002 Laying Down Specific Provisions for the Control of African Swine Fever and Amending Directive 92/119/EEC as Regards Teschen Disease and African Swine Fever.,
  • [39] Dixon L.K., Chapman D.A, Netherton C.L. & Upton C. (2013), African swine fever virus replication and genomics,Virus Research, 173: 3-14.
  • [40] Directorate General for Health and Food Safety (DGHFS) (2015), African Swine Fever Strategy for Eastern Part of the European Uni-on,SANTE/7113/2015-Rev 7
  • [41] (2017), African Swine Fever.,Directorate General for Health and Consumer Protection (DGHCP) (2013). Guidelines on Surveillance and Control of African Swine Fever in Feral Pigs and Preventive Measures for Pig Holdings. SANCO/7138/2013.
  • [42] Cục Chăn nuôi, Bộ Nông nghiệp và Phát triển Nông thôn (2015), Tổng quan về Chiến lược Phát triển và Kế hoạch Tái cơ cấu Ngành chăn nuôi,Hội thảo quốc tế “Ngành chăn nuôi Việt Nam trong Hội nhập Kinh tế: Chia sẻ kinh nghiệm - Định hướng tương lai.” Hà Nội, 27/10/2015.
  • [43] Costard S., Wieland B., de Glanville W., Jori F., Rowlands R., Vosloo W., Roger F., Pfeiffer D.U & Dixon L.K. (2009), African swine fever: how can global spread be prevented?,Philos. Trans. R. Soc. Lond. B. Biol. Sci., 364(1530): 2683-2696.
  • [44] Bosch J., Iglesias I., Muñoz M.J. & de la Torre A. (2016), A cartographic tool for managing African swine fever in Eurasia: mapping wild boar distribution based on the quality of available habitats,Transbound. Emerg. Dis., 64(5): 1424-1432.
  • [45] Borca M.V., Kutish G.F., Afonso C.L. & Irusta P., Carrillo C., Brun A., Sussman M. & Rock D.L. (1994), An African Swine Fever Virus Gene with,Similarity to the T-Lymphocyte Surface-Antigen Cd2 Mediates Hemadsorption. Virology, 199(2): 463-468
  • [46] Boinas F.S., Hutchings G.H., Dixon L.K. & Wilkinson P.J. (2004), C-haracterization of pathogenic and nonpathogenic African swine fever virus isolates f-rom Ornithodoros erraticus inhabiting pig premises in Portugal,J. Gen. Virol., 85: 2177-2187
  • [47] Blome S., Gabriel C. & Beer M. (2014), Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation,Vaccine, 32: 3879-3882.
  • [48] Bellini S., Rutili D. & Guberti V. (2016), Preventive measures aimed at minimizing the risk of African swine fever virus spread in pig farming systems,Acta. Vet. Scand., 58(1):82-91
  • [49] Barderas M.G., Rodríguez F., Gómez-Puertas P., Avilés M., Beitia F., Alonso C. & Escribano J.M. (2001), Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins,Archives of Virology, 146: 1681-1691
  • [50] Astorga J.R., Tarradas C., Argüello H. &Luque I. (2016), Biosecurity on pig farms: biosecurity related to the structure and design of the farm,Suis, 131: 32-36
  • [51] Arzt J., White W.R., Thomsen B.V. & Brown C.C. (2010), Agricultural diseases on the move early in the third millennium,Vet. Pathol., 47(1): 15-27.
  • [52] Arias M. & Sanchez-Vizcaíno J.M. (2002), African swine fever eradication: the Spanish model,In: Morilla A., Jin K., Zimmerman J. (Eds.) Trends in emerging viral infections of swine. Ames: Iowa State University Press, pp. 133-139
  • [53] Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., Mora M., Ballester M., Galindo-Cardiel I., López-Soria S., Escribano J.M., Reche P.A. & Rodríguez F. (2012), DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies,PLoS One, 7: e40942
  • [54] Argilaguet J.M., Perez-Martin E., Gallardo C., Salguero F.J., Borrego B., Lacasta A., Accensi F., Diaz I., Nofrarias M., Pujols J., Blanco E., PérezFilgueira M., Escribano J.M. & Rodríguez F. (2011), Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells,Vaccine, 29: 5379-5385.
  • [55] Alonso F., Dominguez J., Vinuela E. &Revilla Y. (1997), African swine fever virus-specific cytotoxic T lymphocytes recognize the 32 kDa immediate early protein (vp32),Virus Research, 49: 123-130
  • [56] Abrams C.C., Goatley L., Fishbourne E., Chapman D., Cooke L., Oura C.A., Netherton C.L., Takamatsu H.H. & Dixon L.K. (2013), Deletion of virulence associated genes f-rom attenuated African swine fever virus isolate OUR T88/3 decreases its ability to protect against challenge with virulent virus,Virology, 443: 99-105