Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,083,452
  • Công bố khoa học và công nghệ Việt Nam

Nuôi trồng thuỷ sản

Dương Thúy Yên(2)(1), Đào Minh Hải, Đặng Quang Hiếu, Bùi Minh Tâm, Phạm Thanh Liêm, Bùi Thị Bích Hằng, Đỗ Thị Thanh Hương, Patrick Kestemont, Frédéric Farnir, Nguyễn Thanh Phương(3)

Phát triển dòng cá tra (Pangasianodon hypophthalmus) chịu mặn thích ứng với biến đổi khí hậu

Development of salinetolerant striped catfish (Pangasianodon hypophthalmus) adapting to climate change

Khoa học (Đại học Cần Thơ)

2022

CĐSDMD

79-90

1859-2333

Phát triển dòng cá tra chịu mặn để thích ứng với biến đổi khí hậu có ý nghĩa quan trọng đối với nghề nuôi cá tra ở Đồng bằng sông Cửu Long. Trong 5 năm qua, chúng tôi đã thành công trong chọn lọc được dòng cá tra chịu mặn đến 10‰. Cá thành thục tốt ở 5‰ với các chỉ tiêu sinh sản tương tương với cá nuôi trong nước ngọt. Tỷ lệ sống của nhóm cá chọn lọc và không chọn lọc tương đồng nhau ở độ mặn từ 0‰ tới 15‰ và cao hơn nhóm cá nước ngọt mặc dù khác biệt không có ý nghĩa (p>0,05). Sau một thế hệ chọn lọc trong nước lợ, hệ số di truyền về khối lượng là 0,29, tăng trưởng khối lượng tăng 18,0% và tỷ lệ sống tăng 11,4%. Nghiên cứu về sinh lý học cho thấy cá tra có khả năng sinh trưởng ở 15‰ và độ mặn 20‰ được xem là giới hạn chịu đựng của cá tra. Đường ruột của cá phản ứng mạnh nhất với sự thay đổi áp suất thẩm thấu của môi trường so với các cơ quan khác. Phương pháp “hormesis” cho thấy khi cá tiếp xúc với 5‰ ở giai đoạn cá bột làm thay đổi biểu hiện gen về áp suất thẩm thấu, miễn dịch, stress,… dẫn đến tăng tỷ lệ sống và tăng trưởng. Kết quả trên có ý nghĩa quan trọng cho sự phát triển bền vững của cá tra trong vùng, đặc biệt là khu vực bị ảnh hưởng của xâm nhập mặn.

The development of saline-tolerant striped catfish adapting to climate change is of great importance for fish farming in the Mekong Delta. Over the last 5 years, we have succeeded in selecting a striped catfish strain with better tolerance to salinity (up to 10‰). Striped catfish can mature well in 5‰ with reproductive parameters similar to those cultured in freshwater conditions. In the following generation, survival rates of the selected and random groups were similar at salinities from 0‰ to 15‰ and insignificantly higher than the freshwater group (p>0.05). After one generation of selection under saline water conditions, realized heritability for body weight was moderate (0.29) and the average direct responses to selection for growth and survival were 18.0% and 11.4%, respectively. Physiological studies indicated that striped catfish can develop at 15‰ and that the salinity of 20‰ was considered the saline water tolerant limit of striped catfish. The gut of striped catfish was most responsive to changes in the osmotic pressure of water environment compared with other organs. 'Hormesis' method showed that exposure to the saline condition of 5‰ in the larval stage had the potential to alter gene expression related to osmotic regulation, immunity, and stress,... leading to higher survival and growth. The above results are of practical significance, contributing to the sustainable development of striped catfish farming in the Mekong Delta, especially in areas affected by the saline intrusion.

TTKHCNQG, CVv 403

  • [1] Vu, N. T., Sang, N. V, Phuc, T. H., Vuong, N. T., & Nguyen, N. H. (2019), Genetic evaluation of a 15-year se-lection program for high growth in striped catfish Pangasianodon hypophthalmus,Aquaculture, 509, 221–226. https://doi.org/10.1016/j.aquaculture.2019.05.034
  • [2] Tran, D. L., Olesen, I., Ødegård, J., Kolstad, K., & Nguyen, C. D. (2008), Genotype by environment interaction for harvest body weight and survival of Nile tilapia (Oreochromis niloticus) in brackish and freshwater ponds,The Proceedings of 8th International Symposium on Tilapia in Aquaculture (Egypt) (pp. 231–239)
  • [3] Thoa, N. P., Ninh, N. H., Knibb, W., & Nguyen, N. H. (2016), Does se-lection in a challenging environment produce Nile tilapia genotypes that can thrive in a range of production systems?,Scientific Report, 6, 1–11. https://doi.org/10.1038/srep21486
  • [4] Tayamen, M. M., Abella, T. A., Reyes, R. A., Danting, M. J. C., Mendoza, A. M., Marquez, E. B., Salguet, A. C., Apaga, M. M., & González, R. C. (2004), Development of tilapia for saline waters in the Philippines,In Bolivar, R. B., Mair, G.C., & Fitzsimmons K. (Eds.), Proceeding of the 6th International symposium tilapia aquaculture in Manila, Philippines on September 12-16, 2004 – 2, Volume SET., ICLARM, Manila, Philippines (pp. 463-478)
  • [5] Suebsong, W., Poompuang, S., Srisapoome, P., Koonawootrittriron, S., Luengnaruemitchai. A., Johansen, H., & Rye, M. (2019), Se-lection response for Streptococcus agalactiae resistance in Nile tilapia Oreochromis niloticus,Journal of Fish Diseases , 42(11), 1553-1562. https://doi.org/10.1111/jfd.13074
  • [6] Sukhavachana, S., Poompuang, S., Onming, S., & Luengnaruemitchai, A. (2019), Heritability estimates and se-lection response for resistance to Streptococcus agalactiae in red tilapia Oreochromis spp,Aquaculture, 502, 384–390. https://doi.org/10.1016/j.aquaculture.2018.12.075
  • [7] Storset, A., Strand, C., Wetten, M., Kjøglum, S., Ramstad, A. (2007), Response to se-lection for resistance against infectious pancreatic necrosis in Atlantic salmon (Salmo salar L.),Aquaculture, 272, 62–68. https://doi.org/10.1016/j.aquaculture.2007.08.011
  • [8] Schmitz, M., Douxfils, J., Mandiki, S. N. M., Morana, C., Baekelandt, S., & Kestemont, P. (2016), Chronic hyperosmotic stress interferes with immune homeostasis in striped catfish (Pangasianodon hypophthalmus, S.) and leads to excessive inflammatory response during bacterial infection,Fish and Shellfish Immunology, 55, 550–558. https://doi.org/10.1016/j.fsi.2016.06.031
  • [9] Sang, N. V., Klemetsdal, G., Ødegård, J. & Gjøen, H. M. (2012), Genetic parameters of economically important traits recorded at a given age in striped catfish (Pangasianodon hypophthalmus),Aquaculture, 344–349, 82–89. https://doi.org/10.1016/j.aquaculture.2012.03.013
  • [10] Rezk, M. A., Smitherman, R. O., Williams, J. C., Nichols, A., Kucuktas, H., & Dunham, R. A. (2003), Response to three generations of se-lection for increased body weight in channel catfish, Ictalurus punctatus, grown in earthen ponds,Aquaculture, 228, 69–79. https://doi.org/10.1016/S0044-8486(03)00216-3
  • [11] Nguyen, P.T.H., Do, H.T.T., Mather, P.B., Hurwood, D.A. (2014), Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured Tra catfish (Pangasianodon hypophthalmus),Fish Physiology and Biochemistry, 40, 1839–1848. https://doi.org/10.1007/s10695-014-9972-1
  • [12] Nguyen, P. T., Bui, T. M., Nguyen, T. A., & De Silva, S. (2013), Developments in hatchery technology for striped catfish (Pangasianodon hypophthalmus). In: Advances in Aquaculture Hatchery Technology,Woodhead Publ. Ltd. 498–518. https://doi.org/10.1533/9780857097460.3.498
  • [13] Nguyen, N. H. (2016), Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia, and prawns in Asia: Achievements, lessons, and challenges,Fish and Fisheries, 17, 483–506. https://doi.org/10.1111/faf.12122.
  • [14] Nguyen, L. A., Verreth, J. A. J., Leemans, R., Bosma, R., & De Silva, S. (2016), A decision tree analysis to support potential climate change adaptations of striped catfish (Pangasianodon hypophthalmus Sauvage) farming in the Mekong Delta, Vietnam,Tropicultura, 34, Special issue, 105–115
  • [15] Nguyen, P. T. H., Do, H. T. T., Mather, P. B., & Hurwood, D. A. (2014), Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured tra catfish (Pangasianodon hypophthalmus),Fish Physiology and Biochemistry, 40, 1839–1848. https://doi.org/10.1007/s10695-014-9972-1
  • [16] Martin, S.A.M., Dehler, C.E., & Król, E. (2016), Transcriptomic responses in the fish intestine,Developmental & Comparative Immunology, 64, 103–117. https://doi.org/10.1016/j.dci.2016.03.014
  • [17] Lokesh, J., Kiron, V., Sipkema, D., Fernandes, J. M. O., & Moum, T. (2019), Succession of embryonic and the intestinal bacterial communities of Atlantic salmon (Salmo salar) reveals stage-specific microbial signatures,Microbiologyopen, 8, e00672. https://doi.org/10.1002/mbo3.672
  • [18] Lokesh, J., & Kiron, V. (2016), Transition f-rom freshwater to seawater reshapes the skin-associated microbiota of Atlantic salmon,Scientific Report, 6, 19707. https://doi.org/10.1038/srep19707
  • [19] Jaspe, C.J., Caipang, C.M.A. (2011), Increasing salinity tolerance in tilapias: Se-lective breeding using locally available strains,AACL Bioflux, 4, 437–441
  • [20] Huong, D. T. T., & Quyen, N. T. (2012), Effect of salinity on embryo development and osmoregulation of striped catfish (Pangasianodon hypophthalmus) larvae and fingerlings,Can Tho University Journal of Science, 21b, 29–37
  • [21] Hossain, F., Islam, S. M. M., Ashaf-Ud-Doulah, M., Ali, M. S., Islam, M. S., Brown, C., & Shahjahan, M. (2021), Influences of salinity on embryonic and larval development of striped catfish, Pangasianodon hypophthalmus,Frontiers in Marine Science, 8, 1–10. https://doi.org/10.3389/fmars.2021.781951
  • [22] Hieu, D. Q., Hang, B. T. B., Lokesh, J., Garigliany, M. M., Huong, D. T. T., Yen, D. T., Liem, P. T., Tam, B. M., Hai, D. M., Son, V. N., Phuong, N. T., Farnir, F., & Kestemont, P. (2022), Salinity significantly affects intestinal microbiota and gene expression in striped catfish juveniles,Applied Microbiology and Biotechnology, 106, 3245–3264. https://doi.org/10.1007/s00253-022-11895-1
  • [23] Hieu, D. Q., Hang, B. T. B., Huong, D. T. T., Kertaoui, N. El, Farnir, F., Phuong, N. T., & Kestemont, P. (2021), Salinity affects growth performance, physiology, immune responses and temperature resistance in striped catfish (Pangasianodon hypophthalmus) during its early life stages,Fish Physiology and Biochemistry, 47, 1995–2013. https://doi.org/10.1007/s10695-021-01021-9
  • [24] Gjedrem, T., & Rye, M. (2016), Se-lection response in fish and shellfish: A review,Reviews in Aquaculture, 10, 168–179. https://doi.org/10.1111/raq.12154
  • [25] Fridman, S. (2020), Ontogeny of the osmoregulatory capacity of teleosts and the role of ionocytes,Frontiers in Marine Science, 7, 709. https://doi.org/10.3389/fmars.2020.00709
  • [26] (2022), The State of World Fisheries and Aquaculture (SOFIA) (2022).,
  • [27] Falconer, D.S. (1990), Se-lection in different environments: Effects on environmental sensitivity (reaction norm) and on mean performance,Genetics Research, 56, 57–70. https://doi.org/10.1017/S0016672300028883
  • [28] Evans, D. H., Piermarini, P. M., & Choe, K.P. (2005), The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste,Physiological Reviews, 85, 97–177. https://doi.org/10.1152/physrev.00050.2003
  • [29] Donelson, J.M., Sunday, J.M., Figueira, W.F., Gaitán-Espitia, J.D., Hobday, A.J., Johnson, C.R., Leis, J.M., Ling, S.D., Marshall, D., Pandolfi, J.M., Pecl, G., Rodgers, G.G., Booth, D.J., Munday, P.L. (2019), Understanding interactions between plasticity, adaptation, and range shifts in response to marine environmental change,Philosophical Transactions of The Royal Society B, 374, 20180186. https://doi.org/10.1098/rstb.2018.0186
  • [30] Dehler, C. E., Secombes, C. J., & Martin, S. A. M. (2017), Seawater transfer al-ters the intestinal microbiota profiles of Atlantic salmon (Salmo salar L.),Scientific Reports, 7, 13877. https://doi.org/10.1038/s41598-017-13249-8
  • [31] Cnaani, A., Hulata, G. (2011), Improving salinity tolerance in tilapias: Past experience and future prospects,Israel Journal of Aquaculture, Bamidgeh, 63(1). https://doi.org/10.46989/001c.20590
  • [32] Calabrese, E. J., Bachmann, K. A., Bailer, A. J., Bolger, P. M., Borak, J., Cai, L., Cedergreen, N., Cherian, M. G., Chiueh, C. C., & Clarkson, T. W. (2007), Biological stress response terminology: integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework,Toxicology and Applied Pharmacology, 222, 122–128. https://doi.org/10.1016/j.taap.2007.02.015
  • [33] Bui, T.M., Phan, L.T., Ingram, B. A., Nguyen, T.T.T., Gooley, G.J., Nguyen, H. V., Nguyen, P.T., De Silva, S.S. (2010), Seed production practices of striped catfish, Pangasianodon hypophthalmus in the Mekong Delta region, Vietnam,Aquaculture, 306, 92–100. https://doi.org/10.1016/j.aquaculture.-2010.06.016
  • [34] Borode, A.O., Balogun, A.M., Omoyeni, B.A. (2002), Effect of salinity on embryonic development, hatchability, and growth of African catfish, Clarias gariepinus, eggs and larvae,Journal of Applied Aquaculture, 12, 89–93. https://doi.org/10.1300/J028v12n04_08
  • [35] (2016), Kịch bản biến đổi khí hậu và nước biển dâng cho Việt Nam,
  • [36] (2021), Quyết định số 3550/QĐ-BNN-TCTS phê duyệt Đề án phát triển nuôi trồng thủy sản bền vững vùng đồng bằng sông Cửu Long đến năm 2030,
  • [37] Argue, B.J., Arce, S.M., Lotz, J.M., Moss, S.M. (2002), Se-lective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus,Aquaculture, 204, 447–460. https://doi.org/10.1016/S0044-8486(01)00830-4