Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,659,400
  • Công bố khoa học và công nghệ Việt Nam

Hoá lý

Nguyễn Thị Nhật Hằng, Nguyễn Thành Tiên(2), Dương Thị Huyền, Nguyễn Thanh Sĩ(1), Phạm Vũ Nhật

Cơ chế hấp phụ và sự tăng cường hóa học phổ SERS của mercaptopurine và thioguanine trên bề mặt Au6 cluster

Adsorption behaviours and SERS chemical enhancement mechanism of mercaptopurine and thioguanine adsorbed on the gold cluster Au6

Khoa học (Đại học Cần Thơ)

2022

2

111-123

1859-2333

Các phép tính DFT (lý thuyết hàm mật độ) được sử dụng để làm sáng tỏ bản chất của quá trình hấp phụ các phân tử thuốc mercaptopurine (MP) và thioguanine (TG) trên bề mặt vàng, sử dụng Au6 cluster làm mô hình phản ứng. Phiếm hàm PBE kết hợp với bộ cơ sở cc-pVDZ-PP cho Au6 và cc-pVTZ cho các phân tử thuốc được sử dụng để khảo sát cấu trúc hình học, các thông số nhiệt động và tính chất điện tử của các phức chất thu được. Mô hình IEF-PCM với dung môi nước được sử dụng để đánh giá sự ảnh hưởng của môi trường sinh học lên quá trình tương tác. Các kết quả tính toán cho thấy rằng liên kết được quyết định bởi liên kết cộng hóa trị Au−S và một phần bởi hiệu ứng tĩnh điện, cụ thể là liên kết hydro −NH∙∙∙Au. Ngoài ra, sự hấp phụ là quá trình thuận nghịch và cơ chế giải phóng thuốc khỏi bề mặt Au6 cũng được khảo sát. Theo đó, các phân tử thuốc dễ dàng tách khỏi Au6 do sự thay đổi nhỏ của pH trong tế bào khối u hoặc sự hiện diện của cysteine ​​trong protein. Đặc biệt, hiện tượng tán xạ Raman tăng cường bề mặt (SERS) của chúng trên bề mặt kim loại Au cũng được làm sáng tỏ.

The density functional theory calculations are employed to elucidate the adsorption behaviours of mercaptopurine (MP) and thioguanine (TG) drugs on the gold surface, using Au6 cluster as a model reactant. The PBE functional in combination with the effective core potential cc-pVTZ-PP basis set for gold atoms and cc-pVTZ basis set for nonmetals are used to investigated geometric structures, thermodynamic parameters and electronic properties of the obtained complexes. The IEF-PCM model with water solvent is applied to include the effect of biological environment on the interactions. The computed results show that the binding is dominated by a covelent bond Au−S and in part by electrostatic effects, namely a hydrogen bond contribution NH∙∙∙Au. In addition, the drug binding to gold clusters is a reversible process and a drug release mechanism was also clarified. Accordingly, the drugs are willing to separate from the gold surface due to either a slight change of pH in tumor cells or the presence of cysteine residues in protein matrices. In particular, the surface-enhanced Raman scattering (SERS) phenomenon of these molecules adsorbed on the Au surfaces are also elucidated.

TTKHCNQG, CVv 403

  • [1] Yao, G., & Huang, Q. (2018), DFT and SERS study of L-Cysteine adsorption on the surface of gold nanoparticles,Journal of Physical Chemistry C, 122(27), 15241-15251
  • [2] Yang, J. J., Landier, W., Yang, W., Liu, C., Hageman, L., Cheng, C., Pei, D., Chen, Y., Crews, K. R., & Kornegay, N. (2015), Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia,International Journal of Clinical Oncology, 33(11), 1235
  • [3] Yang, H., Liu, Y., Liu, Z., Yang, Y., Jiang, J., Zhang, Z., Shen, G., & Yu, R. (2005), Raman mapping and in situ SERS spectroelectrochemical studies of 6- mercaptopurine SAMs on the gold electrode,Journal of Physical Chemistry B, 109(7), 2739- 2744. doi:10.1021/jp046082l
  • [4] (2019), Executive Summary. The se-lection and use of essential medicines 2019. Report of the 22nd WHO expert committee on the se-lection and use of essential medicines, 1-5 April 2019,Geneva: World Health Organization; 2019. Licence: CC BYNC-SA 3.0 IGO
  • [5] Vivoni, A., Chen, S. P., Ejeh, D., & Hosten, C. M. (2001), Normal‐mode analysis of the Raman‐ active modes of the anti‐tumor agent 6‐ mercaptopurine,Journal of Raman Spectroscopy, 32(1), 1-8
  • [6] Veronese, F. M., & Pasut, G. (2005), PEGylation, successful approach to drug delivery,Drug Discovery Today, 10(21), 1451-1458
  • [7] Torchilin, V. P. (2014), Multifunctional, stimulisensitive nanoparticulate systems for drug delivery,Nature Reviews Drug Discovery, 13(11), 813-827
  • [8] Tomasi, J., Mennucci, B., & Cammi, R. (2005), Quantum mechanical continuum solvation models,Chemical Reviews, 105(8), 2999-3094. doi:10.1021/cr9904009
  • [9] Swietach, P., Vaughan-Jones, R. D., Harris, A. L., & Hulikova, A. (2014), The chemistry, physiology and pathology of pH in cancer,Philosophical Transactions of the Royal Society B, 369(1638), 20130099. doi:10.1098/rstb.2013.0099
  • [10] Suresh Kumar, S., Athimoolam, S., & Sridhar, B. (2015), XRD, vibrational spectra and quantum chemical studies of an anticancer drug: 6- Mercaptopurine,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 146, 204-213. doi:https://doi.org/10.1016/j.saa.2015.02.104
  • [11] Sun, T., Guo, Q., Zhang, C., Hao, J., Xing, P., Su, J., Li, S., Hao, A., & Liu, G. (2012), Self-assembled vesicles prepared f-rom amphiphilic cyclodextrins as drug carriers,Langmuir, 28(23), 8625-8636
  • [12] Si, N. T., Nhung, N. T. A., Bui, T. Q., Nguyen, M. T., & Nhat, P. V.1). (2021), Gold nanoclusters as prospective carriers and detectors of pramipexole,RSC Advances, 11(27), 16619- 16632. doi:10.1039/D1RA02172A
  • [13] Sharma, J., Rocha, R. C., Phipps, M. L., Yeh, H.-C., Balatsky, K. A., Vu, D. M., Shreve, A. P., Werner, J. H., & Martinez, J. S. (2012), A DNAtemplated fluorescent silver nanocluster with enhanced stability,Nanoscale, 4(14), 4107-4110. doi:10.1039/C2NR30662J
  • [14] Scott, K. A., & Njardarson, J. T. (2019), Analysis of US FDA-approved drugs containing sulfur atoms,Sulfur Chemistry, 1-34
  • [15] Sahasranaman, S., Howard, D., & Roy, S. (2008), Clinical pharmacology and pharmacogenetics of thiopurines,European journal of clinical pharmacology, 64(8), 753-767
  • [16] Ren, H., Chen, F., Li, X., & He, Y. (2019), A new insight of structures, bonding and electronic properties for 6-mercaptopurine and Ag 8 clusters configurations: a theoretical perspective,BMC chemistry, 13(1), 1-10
  • [17] Ramezanpour, M., Leung, S., Delgado-Magnero, K., Bashe, B., Thewalt, J., & Tieleman, D. (2016), Computational and experimental approaches for investigating nanoparticle-based drug delivery systems,Biochimica et Biophysica Acta, 1858(7), 1688-1709
  • [18] Petty, J. T., Nicholson, D. A., Sergev, O. O., & Graham, S. K. (2014), Near-infrared silver cluster optically signaling oligonucleotide hybridization and assembling two DNA hosts,Analytical Chemistry, 86(18), 9220-9228. doi:10.1021/ac502192w
  • [19] Peterson, K. A., & Puzzarini, C. (2005), Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements,Theoretical Chemistry Accounts, 114(4), 283-296
  • [20] Perdew, J. P., Burke, K., & Ernzerhof, M. (1996), Generalized gradient approximation made simple,Phys. Rev. Lett., 77(18), 3865. doi:10.1103/PhysRevLett.77.3865
  • [21] Peng, S., Cho, K., Qi, P., & Dai, H. (2004), Ab initio study of CNT NO2 gas sensor,Chemical Physics Letters, 387(4), 271-276
  • [22] Pearson, R. G. (1963), Hard and Soft Acids and Bases,Journal of the American Chemical Society, 85(22), 3533-3539. doi:10.1021/ja00905a001
  • [23] Pazderski, L., Łakomska, I., Wojtczak, A., Szłyk, E., Sitkowski, J., Kozerski, L., Kamieński, B., Koźmiński, W., Tousek, J., & Marek, R. (2006), The studies of tautomerism in 6-mercaptopurine derivatives by 1H13C, 1H15N NMR and 13C, 15N CPMAS-experimental and quantum chemical approach,Journal of Molecular Structure, 785(1), 205-215. doi:https://doi.org/10.1016/j.molstruc.2005.10.011
  • [24] Parker, W. B. (2009), Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer,Chemical Reviews, 109(7), 2880-2893
  • [25] Pannico, M., & Musto, P. (2021), SERS spectroscopy for the therapeutic drug monitoring of the anticancer drug 6-Mercaptopurine: Molecular and kinetic studies,Applied Surface Science, 539, 148225
  • [26] Pakiari, A. H., & Jamshidi, Z. (2007), Interaction of amino acids with gold and silver clusters,Journal of Physical Chemistry A, 111, 4391-4396
  • [27] Ochterski, J. W. (), Thermochemistry in Gaussian,See: help@gaussian.com
  • [28] Obliosca, J. M., Liu, C., & Yeh, H.-C. (2013), Fluorescent silver nanoclusters as DNA probes,Nanoscale, 5(18), 8443-8461. doi:10.1039/C3NR01601C
  • [29] O'Neil, M. J. (2013), The Merck index: an encyclopedia of chemicals, drugs, and biologicals,RSC Publishing
  • [30] Nhat, P. V., Si, N. T., Leszczynski, J., & Nguyen, M. T. (2017), Another look at structure of gold clusters Aun f-rom perspective of phenomenological shell model,Chemical Physics, 493, 140-148
  • [31] Nhat, P. V., Nguyen, P. T. N., & Si, N. T. (2020), A computational study of thiol-containing cysteine amino acid binding to Au6 and Au8 gold clusters,Journal of Molecular Modeling, 26(3), 1-8
  • [32] Mohammadi, A., Nicholls, D. L., & Docoslis, A. (2018), Improving the surface-enhanced Raman scattering performance of silver nanodendritic substrates with sprayed-on graphene-based coatings,Sensors, 18(10), 3404
  • [33] Le Guével, X., Hötzer, B., Jung, G., Hollemeyer, K., Trouillet, V., & Schneider, M. (2011), Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy,Journal of Physical Chemistry C, 115(22), 10955-10963. doi:https://doi.org/10.1021/jp111820b
  • [34] Kam, N. W. S., Liu, Z., & Dai, H. (2005), Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing,Journal of the American Chemical Society, 127(136), 12492-12493
  • [35] Kalepu, S., & Nekkanti, V. (2015), Insoluble drug delivery strategies: Review of recent advances and busines sprospects,Acta Pharmaceutica Sinica B, 5(5), 442-453
  • [36] Jensen, L., Aikens, C. M., & Schatz, G. C. (2008), Electronic structure methods for studying surface-enhanced Raman scattering,Chemical Society Reviews, 37(5), 1061-1073
  • [37] Jeanmaire, D. L., & Van Duyne, R. P. (1977), Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 84(1), 1-20
  • [38] Javarsineh, S., Vessally, E., Bekhradnia, A., Hosseinian, A., & Ahmadi, S. (2018), A computational study on the purinethol drug adsorption on the AlN nanocone and nanocluster,Journal of Cluster Science, 29(4), 767-775
  • [39] Itoh, T., Yoshida, K., Biju, V., Kikkawa, Y., Ishikawa, M., & Ozaki, Y. (2007), Second enhancement in surface-enhanced resonance Raman scattering revealed by an analysis of antiStokes and Stokes Raman spectra,Physical Review B, 76(8), 085405
  • [40] Hainfeld, J. F., Slatkin, D. N., Focella, T. M., & Smilowitz, H. M. (2005), Gold nanoparticles: A new X-ray contrast agent,British Journal of Radiology, 79, 248-253
  • [41] Gwinn, E., Schultz, D., Copp, S. M., & Swasey, S. (2015), DNA-protected silver clusters for nanophotonics,Nanomaterials (Basel), 5(1), 180-207. doi:10.3390/nano5010180
  • [42] Ghosh, P., Han, G., De, M., Kim, C. K., & Rotello, V. M. (2008), Gold nanoparticles in delivery applications,Advanced Drug Delivery Reviews, 60(11), 1307-1315
  • [43] Ensafi, A. A., & Karimi‐Maleh, H. (2012), Determination of 6‐mercaptopurine in the presence of uric acid using modified multiwall carbon nanotubes‐TiO2 as a voltammetric sensor,Drug Testing and Analysis, 4(12), 970-977
  • [44] Eckhardt, S., Brunetto, P. S., Gagnon, J., Priebe, M., Giese, B., & F-romm, K. M. (2013), Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine,Chemical Reviews, 113(7), 4708−4754. doi:https://doi.org/10.1021/cr300288v
  • [45] Demurtas, M., & Perry, C. C. (2014), Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity,Gold bulletin, 47, 103-107
  • [46] Cordero, E., Korinth, F., Stiebing, C., Krafft, C., Schie, I. W., & Popp, J. (2017), Evaluation of shifted excitation Raman difference spectroscopy and comparison to computational background correction methods applied to biochemical Raman spectra,Sensors, 17(8), 1724.
  • [47] Cialla, D., Pollok, S., Steinbrücker, C., Weber, K., & Popp, J. (2014), SERS-based detection of biomolecules,Nanophotonics, 3(6), 383-411
  • [48] Brar, S. K., & Verma, M. (2011), Measurement of nanoparticles by light-scattering techniques,Trends in Analytical Chemistry, 30(1), 4-17
  • [49] Bazylewski, P., Divigalpitiya, R., & Fanchini, G. (2017), In situ Raman spectroscopy distinguishes between reversible and irreversible thiol modifications in L-cysteine,RSC Advances, 7(5), 2964-2970
  • [50] Bauman, S. J., Brawley, Z. T., Darweesh, A. A., & Herzog, J. B. (2017), Substrate oxide layer thickness optimization for a dual-width plasmonic grating for surface-enhanced Raman spectroscopy (SERS) biosensor applications,Sensors, 17(7), 1530
  • [51] Bao-Zong, L. (2004), DFT calculations on 6- thiopurine tautomers,Acta Chimica Sinica, 62(11), 1075-1079
  • [52] Austin, L. A., Mackey, M. A., Dreaden, E. C., & ElSayed, M. A. (2014), The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery,Archives of Toxicology, 88(7), 1391-1417
  • [53] Akhter, S., Ahmad, I., Ahmad, M. Z., Ramazani, F., Singh, A., Rahman, Z., & Kok, R. J. (2013), Nanomedicines as cancer therapeutics: Current status,Current Cancer Drug Targets, 13(4), 362-378
  • [54] Ajnai, G., Chiu, A., Kan, T., Cheng, C. C., Tsai, T. H., & Chang, J. (2014), Trends of gold nanoparticle-based drug delivery system in cancer therapy,Journal of Experimental & Clinical Medicine, 6(6), 172-178
  • [55] Ac-har, S., & Puddephatt, R. J. (1994), Organoplatinum dendrimers formed by oxidative addition,Angewandte Chemie International Edition, 33(8), 847-849