Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  27,676,820
  • Công bố khoa học và công nghệ Việt Nam

Toán học cơ bản

Võ Thành Tài(1), Trần Thị Kim Anh, Trần Ngọc Tâm(2)

Sự tồn tại nghiệm và tính liên tục của ánh xạ nghiệm bài toán điều khiển tối ưu đa mục tiêu

Existence and continuity of solutions to multiobjective optimal control problems

Khoa học (Đại học Cần Thơ)

2022

CĐKHTN

1859-2333

Bài viết nghiên cứu sự tồn tại và ổn định nghiệm của bài toán điều khiển tối ưu đa mục tiêu với phương trình trạng thái phi tuyến bị nhiễu. Bằng cách sử dụng các công cụ và kỹ thuật thích hợp, các điều kiện đủ cho sự tồn tại nghiệm và tính liên tục nghiệm của bài toán đang xét được thiết lập.

This paper investigates the existence and stability of solutions to a multiobjective optimal control problem with perturbed nonlinear state equations. By using suitable tools and techniques, sufficient conditions for the existence and continuity of solutions to this problem are established.

TTKHCNQG, CVv 403

  • [1] Zhou, H., & Qiao, J. (2019), Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D,Applied Intelligence, 49(3), 1098-1126. https://doi.org/10.1007/s10489-018- 1319-7
  • [2] Yu, J., Liu, Z. X., Peng, D. T., Xu, D. Y., & Zhou, Y. H. (2014), Existence and stability analysis of optimal control,Optimal Control Applications and Methods, 35(6), 721-729. https://doi.org/10.1002/oca.2096
  • [3] Yang, Y., Lin, S., Wang, Q., Xie, Y., & Liu, M. (2020), Multi-objective optimal control approach for static voltage stability of power system considering interval uncertainty of the wind farm output,IEEE Access, 8, 119221-119235. https://doi.org/10.1109/ACCESS.2020.3002931
  • [4] Toan, N. T., & Thuy, L. Q. (2021), Sensitivity analysis of multi-objective optimal control problems,Applied Mathematics & Optimization, 84(3), 3517-3545. https://doi.org/10.1007/s00245-021-09755-x
  • [5] Steuer, R. E., Gardiner, L. R., & Gray, J. (1996), A bibliographic survey of the activities and international nature of multiple criteria decision making,Journal of Multi‐Criteria Decision Analysis, 5(3), 195-217. https://doi.org/10.1002/(SICI)1099- 1360(199609)5:33.0.CO;2-D
  • [6] Ramos, A. M., Glowinski, R., & Periaux, J. (2002), Nash equilibria for the multiobjective control of linear partial differential equations,Journal of Optimization Theory and Applications, 112(3), 457-498. https://doi.org/10.1023/A:1017981514093
  • [7] Oliveira, V. A., & Silva, G. N. (2016), On sufficient optimality conditions for multiobjective control problems,Journal of Global Optimization, 64(4), 721-744. https://doi.org/10.1007/s10898-015- 0351-y
  • [8] Ngo, T. N., & Hayek, N. (2016), Necessary conditions of Pareto optimality for multiobjective optimal control problems under constraints,Optimization, 66(2), 149-177. https://doi.org/10.1080/02331934.2016.1261349
  • [9] Lalitha, C. S., & Chatterjee, P. (2012), Stability for properly quasiconvex vector optimization problem,Journal of Optimization Theory and Applications, 155(2), 492-506. https://doi.org/10.1007/s10957-012-0079-5
  • [10] Kien, B. T., Tuyen, N. V., & Yao, J. C. (2018), Second-order KKT optimality conditions for multiobjective optimal control problems,SIAM Journal on Control and Optimization. 56(6), 4069-4097. https://doi.org/10.1137/17M1161750
  • [11] Kien, B. T., Wong, N. C., & Yao, J. C. (2008), Necessary conditions for multi-objective optimal control problem with free end-time,SIAM Journal on Control and Optimization, 47(5), 2251-2274. https://doi.org/10.1137/080714683
  • [12] Kaya, C. Y., & Maurer, H. (2014), A numerical method for nonconvex multi-objective optimal control problems,Computational Optimization and Applications, 57(3), 685-702. https://doi.org/10.1007/s10589-013-9603-2
  • [13] Karuna, & Lalitha, C. S. (2019), External and internal stability in set optimization,Optimization, 68(4), 833-852. https://doi.org/10.1080/02331934.2018.1556663
  • [14] Han, Y., & Huang, N. J. (2017), Well-posedness and stability of solutions for set optimization problems,Optimization, 66(1), 17-33. https://doi.org/10.1080/02331934.2016.1247270
  • [15] Gutiérrez, C., Miglierina, E., Molho, E. & Novo, V. (2016), Convergence of solutions of a set optimization problem in the image space,Journal of Optimization Theory and Applications, 170(2), 358-371. https://doi.org/10.1007/s10957-016-0942-x
  • [16] Gramatovici, S. (2005), Optimality conditions in multiobjective control problems with generalized invexity,Annals of the University of CraiovaMathematics and Computer Science Series, 32, 150-157
  • [17] Gambier, A., & Badreddin, E. (2007), Multiobjective optimal control: An overview,IEEE International Conference on Control Applications, 170-175. https://doi.org/10.1109/CCA.2007.4389225
  • [18] Chicone, C. (1999), Ordinary differential equations with applications,Springer New York
  • [19] Anh, L. Q., Tai, V. T., & Tam T. N. (2021), On Hölder calmness and Hölder well-posedness for optimal control problems,Optimization. https://doi.org/10.1080/02331934.2021.1892676
  • [20] Anh, L. Q., Duy, T. Q., Hien, D. V., Kuroiwa, D., & Petrot, N. (2020), Convergence of solutions to set optimization problems with the set less order relation,Journal of Optimization Theory and Applications, 185(2), 416-432. https://doi.org/10.1007/s10957-020-01657-2
  • [21] Aubin, J. P., & Frankowska, H. (2009), Set-valued Analysis,Springer Science & Business Media. https://doi.org/10.1007/978-0-8176-4848-0
  • [22] Aubin, J. P., & Ekeland, I. (1984), Applied Nonlinear Analysis,Courier Corporation