



- Công bố khoa học và công nghệ Việt Nam
Khoa học máy tính
Nguyễn Chí Ngôn(2), Lê Thanh Tú, Lương Hoàng Vĩnh Thuận, Nguyễn Chánh Nghiệm(3)(1)
Khảo sát kỹ thuật học sâu trên bài toán chẩn đoán hư hỏng động cơ điện dựa trên tiếng ồn vận hành
Investigation of deep learning algorithm applied on induction motor fault diagnosis based on operation sound
Khoa học (ĐH Cần Thơ)
2022
1
27-40
1859-2333
TTKHCNQG, CVv 403
- [1] Zhou, B., Khosla, A., Lapedriza, A., Torralba, A., & Oliva, A. (2014), Places: An image database for deep scene understanding,Journal of Vision, 17(10), 296, 1-12. DOI: https://doi.org/10.1167/17.10.296
- [2] Yang, T., Pen, H., Wang, Z., & Chang, C.S. (2016), Feature Knowledge Based Fault Detection of Induction Motors Through the Analysis of Stator Current Data,IEEE Transactions on Instrumentation and Measurement, 65(3), 549- 558. DOI: 10.1109/TIM.2015.2498978
- [3] Xia, M., Li, T., Xu, L., Liu, L., & de Silva, C.W. (2018), Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks,IEEE/ASME Transactions on Mechatronics, 23(1), 101-110. DOI:10.1109/TMECH.2017.2728371
- [4] Wen, L., Gao, L., & Li, X. (2017), A New Deep Transfer Learning Based on Sparse AutoEncoder for Fault Diagnosis,IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(1), 136-144. DOI:10.1109/TSMC.2017.2754287
- [5] Szegedy, C., Wei, L., Yangqing, J., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015), Going Deeper with Convolutions,IEEE Confer. on Computer Vision and Pattern Recognition – CVPR 2015 (pp. 1-9). DOI: 10.1109/CVPR.2015.7298594
- [6] Singh, S.K., Kumar, S., & Dwivedi, J.P. (2017), Compound fault prediction of rolling bearing using multimedia data,Multimedia Tools Applications, 76, 18771–18788. https://doi.org/10.1007/s11042-017-4419-1
- [7] Sangeetha, P., & Hemamalini, S. (2017), Dyadic wavelet transform-based acoustic signal analysis for torque prediction of a three-phase induction motor,IET Signal Processing, 11(5), 604–612. DOI: 10.1049/iet-spr.2016.0165
- [8] Qi, Y., Shen, C., Wang, D., Shi, J., Jiang, X., & Zhu, Z. (2017), Stacked Sparse Auto encoder-Based Deep Network for Fault Diagnosis of Rotating Machinery,IEEE Access, 5, 15066–15079
- [9] Mishra, A., Ranjan, P., & Ujlayan, A. (2020), Empirical analysis of deep learning networks for affective video tagging,Multimedia Tools Applications, 79, 18611–18626, Springer. https://doi.org/10.1007/s11042-020-08714-y
- [10] Mallat, S. G. (1989), A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,IEEE Trans. on Pattern Analysis and Machine Intelligence, 11(7), 674–693
- [11] Li, Y., Chai, F., Song, Z., & Li, Z. (2017), Analysis of Vibrations in Interior Permanent Magnet Synchronous Motors Considering Air-Gap Deformation,Energies, 10(9), 1259. https://doi.org/10.3390/en10091259
- [12] Lilly, J.M., & Olhede, S. C. (2020), Generalized Morse Wavelets as a Superfamily of Analytic Wavelets,IEEE Transactions on Signal Processing, 60(11), 6036-6041. DOI:10.1109/TSP.2012.2210890
- [13] Kumar, A., Gandhi, C.P., Zhou, Y., Kumar, R., & Xiang, J. (2020), Improved deep convolution neural network (CNN) for the identification of defects in the centrifugal pump using acoustic images,Applied Acoustics, 167, 107399. ISSN 0003-682X. https://doi.org/10.1016/j.apacoust.2020.107399
- [14] Kim, D., Kim, H., Hong, J., & Park, C. (2014), Estimation of Acoustic Noise and Vibration in an Induction Machine Considering Rotor Eccentricity,IEEE Transactions on Magnetics, 50(2), 857-860. DOI:10.1109/TMAG.2013.2285391
- [15] Ince, T., Kiranyaz, S., Eren, L., Askar, M., & Gabbouj, M. (2016), Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks,IEEE Transactions on Industrial Electronics, 63(11), 7067-7075. DOI:10.1109/TIE.2016.2582729
- [16] Henao, H., Capolino, G.A., Fernandez-Cabanas, M., Filippetti, F., Bruzzese, C. , Strangas, E., Pusca, R., Estima, I., Riera-Guasp, M., & Hedayati-Kia, S. (2014), Trends in Fault Diagnosis for Electrical Machines A Review of Diagnostic Techniques,IEEE Industrial Electronics Magazine, 8(2), 31-42. DOI:10.1109/MIE.2013.2287651
- [17] Haar, A. (2010), Zur Theorie der orthogonalen Funktionensysteme,Mathematische Annalen, 69(3), 331–371. DOI:10.1007/BF01456326
- [18] Guo, P., Infield, D., & Yang, X. (2012), Wind turbine generator condition monitoring using temperature trend analysis,IEEE Trans. Sustain. Energy, 3(1),124–133
- [19] Glowacz, A., Glowacz, W., Glowacz, Z., & Kozik, J. (2018), Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals,Measurement, 113, 1-9. http://dx.doi.org/10.1016/j.measurement.2017.0 8.036
- [20] Glowacz, A., Glowacz, W., Glowacz, Z., Kozik, J., Gutten, M., Korenciak, D., Khan, Z.F., Irfan, M., & Carletti, E. (2017), Fault diagnosis of three phase induction motor using current signal, MSAF-Ratio15 and se-lected classifiers,Arch Metall Mater, 62(4), 2413–2419
- [21] Glowacz, A., & Glowacz, Z. (2017), Diagnosis of the three-phase induction motor using thermal imaging,Infrared Physics & Technology, 81, 7- 16, https://doi.org/10.1016/j.infrared.2016.12.003
- [22] Ciszewski, T., Gelman, L., & Swedrowski, L. (2016), Current-based higher-order spectral covariance as a bearing diagnostic feature for induction motors,Insight - Non-Destructive Testing and Condition Monitoring, 58(8), 431-434
- [23] Chen, Y.-W. (2021), Audio Normalization,MATLAB Central File Exchange (retrieved 10/8/2021)
- [24] Daubechies, I. (1992), Ten Lectures on Wavelets,CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia, SIAM, 1st Ed. ISBN: 978-0-89871-274-2
- [25] Bonnett, A.H., & Soukup, G.C. (1992), Cause and analysis of stator and rotor failures in three-phase squirrel-cage induction motors,IEEE Transactions on Industry Applications, 28(4), 921-937. DOI: 10.1109/28.148460
- [26] Arora, S., Bhaskara, A., Ge, R., & Ma, T.). (2014), Provable bounds for learning some deep representations,Proc. of the 31st Inter. Confer. on Machine Learning, in PMLR, 32(1), 584-592
- [27] Akansu, A. N. (1994), Wavelets and filter banks A signal processing perspective,IEEE Circuits and Devices Magazine, 10, 14-18