Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,666,853
  • Công bố khoa học và công nghệ Việt Nam

Vật lý nguyên tử, vật lý phân tử và vật lý hóa học

Phạm Thị Bích Thảo, Nguyễn Thị Mỹ Hằng, Trương Võ Minh Nguyệt, Nguyễn Lê Hoài Phương, Lê Tuấn, Nguyễn Thành Tiên(1)

Ảnh hưởng của hình thái và yếu tố tôi hóa lên đặc tính điện tử và phổ hấp thụ của chấm lượng tử penta-graphene

Effect of morphology and passivation on the electronic properties and absorption spectra of the penta-graphene quantum dots

Khoa học (Đại học Cần Thơ)

2022

CĐKHTN

79-89

1859-2333

Trong nghiên cứu này, tính chất điện tử và tính chất quang của chấm lượng tử penta-graphene với hình thái khác nhau được khảo sát bởi việc sử dụng lý thuyết phiếm hàm mật độ. Kết quả nghiên cứu cho thấy, H-ZZ36 là cấu trúc ổn định nhất với đỉnh phổ hấp thụ khoảng 320 nm ở vùng tử ngoại. Khi cấu trúc này được tôi hóa biên lần lượt bằng các nguyên tử Silicon (Si), Phosphorus (P), Oxygen (O) và Fluorine (F), độ rộng vùng cấm được thu hẹp so với việc tôi hóa biên bởi nguyên tử Hydrogen (H). Thêm vào đó, đỉnh phổ hấp thụ của các cấu trúc trên dịch chuyển về vùng khả kiến với bước sóng tương ứng từ 350 nM đến 760 nM hoặc đỉnh hấp thụ nằm trong vùng hồng ngoại gần. Điều này cho thấy, thay đổi yếu tố tôi hóa là một trong những phương pháp hữu ích để phát triển những ứng dụng của chấm lượng tử penta-graphene trong các thiết bị quang điện tử.

In this study, electronic and optical properties of the penta-graphene quantum dots (PGQD) with different morphology are investigated by using the density functional theory. The result shows that H-ZZ-36 is the best stable structure with optical absorption peaks in the ultraviolet region of 320 nm. This structure with various edge-functionalized groups including Silicon (Si), Phosphorus (P), Oxygen (O) and Fluorine (F), the band gap is narrowed than that of edge functionalized PGQD with Hydrogen (H). Furthermore, optical absorption peaks of Si-ZZ-36, P-ZZ-36, O-ZZ-36 and F-ZZ-36 shift to the visible light range of 350 nm and 760 nm or those belong to the near-infrared region. In results, changing the passivation factor is one of the useful methods to develop applications of penta-graphene quantum dots in optoelectronic devices.

TTKHCNQG, CVv 403

  • [1] Yuan, P. F., Zhang, Z. H., Fan, Z. Q., & Qiu, M. (2017), Electronic structure and magnetic properties of penta-graphene nanoribbons,Physical Chemistry Chemical Physics, 19(14), 9528-9536. https://doi.org/10.1039/C7CP00029D
  • [2] Yoon, H., Chang, Y. H., Song, S. H., Lee, E. S., Jin, S. H., Park, C., Lee J., Kim., B. H., Kang, H. J., Kim, Y. H., & Jeon, S. (2016), Intrinsic photoluminescence emission f-rom subdomained graphene quantum dots,Advanced Materials, 28(26), 5255-5261. https://doi.org/10.1002/adma.201600616
  • [3] Yan, Y., Gong, J., Chen, J., Zeng, Z., Huang, W., Pu, K., Liu, J., & Chen, P. (2019), Recent advances on graphene quantum dots: f-rom chemistry and physics to applications,Advanced Materials, 31(21), 1808283. https://doi.org/10.1002/adma.201808283
  • [4] Vu, T. T., & Tran, V. T. (2020), Tight-binding description for the electronic band structure of penta-graphene,Semiconductor Science and Technology, 35(9), 095037. https://doi.org/10.1088/1361-6641/ab98d9
  • [5] Tien, N. T., Thuan, L. V. P. & Mi, T. Y. (2021), An ab initio study of small gas molecule adsorption on the edge of N-doped sawtooth penta-graphene nanoribbons,Papers in physics, 13, 130003- 130003. https://doi.org/10.4279/pip.130003
  • [6] Tien, N. T., Thao, P. T. B., Phuc, V. T., & Ahuja, R. (2020), Influence of edge termination on the electronic and transport properties of sawtooth penta-graphene nanoribbons,Journal of Physics and Chemistry of Solids, 146, 109528. https://doi.org/10.1016/j.jpcs.2020.109528
  • [7] Tien, N. T., Thao, P. T. B., Phuc, V. T., & Ahuja, R. (2019), Electronic and transport features of sawtooth penta-graphene nanoribbons via substitutional doping,Physica E: Lowdimensional Systems and Nanostructures, 114, 113572. https://doi.org/10.1016/j.physe.2019.113572
  • [8] Sohal, N., Maity, B., & Basu, S. (2021), Recent advances in heteroatom-doped graphene quantum dots for sensing applications,RSC Advances, 11(41), 25586-25615. https://doi.org/10.1039/D1RA04248C
  • [9] Singh, D., Gupta, S. K., Sonvane, Y., & Lukačević, I. (2016), Antimonene: a monolayer material for ultraviolet optical nanodevices,Journal of Materials Chemistry C, 4(26), 6386-6390. https://doi.org/10.1039/C6TC01913G
  • [10] Shunhong, Z., Jian, Z., Qian, W., Xiaoshuang, C., Yoshiyuki, K., & Puru, J. (2015), Pentagraphene: A new carbon allotrope. Radioelectronics,Nano systems. Information Technologies, 7(2), 191-207. https://doi.org/10.17725/rensit.2015.07.191
  • [11] Santos, R. M. D., Sousa, L. E. D., Galvão, D. S., & Ribeiro, L. A. (2020), Tuning penta-graphene electronic properties through engineered line defects,Scientific reports, 10(1), 1-8. https://doi.org/10.1038/s41598-020-64791-x
  • [12] Reed, M., Randall J., Aggarwal, R., Matyi, R., Moore, T., & Wetsel, A. (1988), Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure,Physical Review Letters, 60, 535. https://doi.org/10.1103/PhysRevLett.60.535
  • [13] Petroff, P. M. (2003), Epitaxial growth and electronic structure of self-assembled quantum dots,Single Quantum Dots, 1-24. https://doi.org/10.1007/978-3-540-39180-7_1
  • [14] Moreau, E., Robert, I., Manin, L., Thierry-Mieg, V., Gérard, J. M., & Abram, I. (2001), Quantum cascade of photons in semiconductor quantum dots,Physical Review Letters, 87(18), 183601. https://doi.org/10.1103/PhysRevLett.87.183601
  • [15] Maxwell, T., Campos, M. G. N., Smith, S., Doomra, M., Thwin, Z., & Santra, S. (2020), Quantum Dots,In Nanoparticles for Biomedical Applications, 243-265. Elsevier. https://doi.org/10.1016/B978-0-12-816662- 8.00015-1
  • [16] Liu, Q., Sun, J., Gao, K., Chen, N., Sun, X., Ti, D., Bai, C., Cui, R. & Qu, L. (2020), Graphene quantum dots for energy storage and conversion: f-rom fabrication to applications,Materials Chemistry Frontiers, 4(2), 421-436. https://doi.org/10.1039/C9QM00553F
  • [17] Li, Y., Shu, H., Niu, X., & Wang, J. (2015), Electronic and optical properties of edgefunctionalized graphene quantum dots and the underlying mechanism,The Journal of Physical Chemistry C, 119(44), 24950-24957. https://doi.org/10.1021/acs.jpcc.5b05935
  • [18] Feng, J., Guo, Q., Song, N., Liu, H., Dong, H., Chen, Y., Yu, L., & Dong, L. (2021), Density functional theory study on optical and electronic properties of co-doped graphene quantum dots based on different nitrogen doping patterns,Diamond and Related Materials, 113, 108264. https://doi.org/10.1016/j.diamond.2021.108264
  • [19] Feng, J., Guo, Q., Liu, H., Chen, D., Tian, Z., Xia, F., Ma, S., Zu, L., & Dong, L. (2019), Theoretical insights into tunable optical and electronic properties of graphene quantum dots through phosphorization,Carbon, 155, 491-498. https://doi.org/10.1016/j.carbon.2019.09.009
  • [20] Feng, J., Dong, H., Pang, B., Chen, Y., Yu, L., & Dong, L. (2019), Tuning the electronic and optical properties of graphene quantum dots by se-lective boronization,Journal of Materials Chemistry C, 7(2), 237-246. https://doi.org/10.1039/C8TC03863E
  • [21] Ekimov, A. I., Efros, A. L., & Onushchenko, A. A. (1985), Quantum size effect in semiconductor microcrystals,Solid State Communications, 56(11), 921-924. https://doi.org/10.1016/S0038-1098(85)80025-9
  • [22] De Sousa, J. M., Aguiar, A. L., Girão, E. C., Fonseca, A. F., Souza Filho, A. G., & Galvão, D. S. (2021), Computational study of elastic, structural stability and dynamics properties of penta-graphene membrane,Chemical Physics, 542, 111052. https://doi.org/10.1016/j.chemphys.2020.111052
  • [23] Dai, X. S., Shen, T., Feng, Y., & Liu, H. C. (2019), Structure, electronic and optical properties of Al, Si, P doped penta-graphene: A first-principles study,Physica B: Condensed Matter, 574, 411660. https://doi.org/10.1016/j.physb.2019.411660
  • [24] Cheng, M. Q., Chen, Q., Yang, K., Huang, W. Q., Hu, W. Y., & Huang, G. F. (2019), Pentagraphene as a potential gas sensor for NOx detection,Nanoscale Research Letters, 14(1), 1- 8. https://doi.org/10.1186/s11671-019-3142-4c
  • [25] Berdiyorov, G. R., Dixit, G., & Madjet, M. E. (2016), Band gap engineering in penta-graphene by substitutional doping: first-principles calculations,Journal of Physics: Condensed Matter, 28(47), 475001. https://doi.org/10.1088/0953-8984/28/47/475001