The study used up to 900 hand-collected image data separated into 500 for analysis and 400 remains for assessing the result. All trashed objects used for generating data were collected around the Ho Chi Minh city University of Technology (HCMUT, Vietnam). The Deep Learning model used in this research, named SSD MobileNet V2, is part of the open-source Tensorflow Object Detection API. The system gave the result, the relative match percentage of different amounts of data we fed the model. The system showed linear relativity between the amount of data trained AI100, AI200, AI300, AI400, AI500, and the mean Average Precision (mAP) when testing the system. From this on, the study conducted another experiment to ensure that the performance of the trained model would meet expectations, AI401. In this experiment, the system showed over 80% inaccuracy overall. By back-analysis, this paper would be a good vision for researchers to study and enhance the system’s accuracy to serve the purpose of trash classification in innovative trash bin applications.