



- Công bố khoa học và công nghệ Việt Nam
Cây rau, cây hoa và cây ăn quả
Đinh Thị Hiền, Phạm Trung Hiếu, Trần Đại Lâm, Lê Thế Tâm, Vũ Thị Thoa, Nguyễn Thị Phương Thảo, Lê Đăng Quang(1)
Nghiên cứu ảnh hưởng của tích hợp vi khuẩn endophyte Bacillus subtilis GB03 với vật liệu nano silica đến sự phát triển của cây dưa lưới (Cucumis melo)
Study on the effect of integrating endophyte Bacillus subtilis GB03 and silica nanoparticles on the growth of melon crop (Cucumis melo)
Khoa học & Công nghệ Việt Nam
2021
02
33-38
1859 - 4794
TTKHCNQG, CVv 8
- [1] D. Luciana; N.I. Hersantia; H. Sri; J.I. Made (2019), In vitro study of plant growth promoting rhizobacteria (PGPR) and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS),Biocatalysis and Agricultural Biotechnology, 19, p.101153.
- [2] Y. Rathinam; E. Viswanathan; R. Venkatachalam; S.K. Narayana; P. Periasamy (2011), Influence of nano silica powder on the growth of maize crop (Zea Mays L.),International Journal of Green Nanotechnology, 3, pp.180-190.
- [3] Q.F. Li; C.C. Ma (2002), Effect of available silicon in soil on cucumber seed germination and seedling growth metabolism,Acta Hortic Sinica., 29, pp.433-437.
- [4] K. Birgit; A.C. Marc; L. Gerhard (2005), Plant hormone interactions during seed dormancy release and germination,Seed Sci. Res., 15, pp.281-307.
- [5] S.C.C. Cassandra; E.T. Peter; W.M.H. Henk; E.F.S. William (2006), Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism,Plant J., 46, pp.805-822.
- [6] N. Boroumand; M. Behbahani; G. Dini (2020), Combined effects of phosphate solubilizing bacteria and nano silica on the growth of land cress plant,Journal of Soil Science and Plant Nutrition, 20, pp.232-243.
- [7] M. Catauro; F. Bollino; F. Papale; M. Gallicchio; S. Pacifico (2015), Influence of the polymer amount on bioactivity and biocompatibility of SiO2/PEG hybrid materials synthesized by sol-gel technique,Materials Science and Engineering C, 48, pp.548-555.
- [8] V. Simon; D. Eniu; A. Gritco; S. Simon (2007), Thermal and spectroscopic investigation of sol-gel derived aluminosilicate bioglass matrices,Journal of Optoelectronics and Advanced Materials, 9, pp.3368-3371.
- [9] Y. Hiroyuki; K. Kanichi; N. Hiroyuki (1990), IR study on the structural evolution of sol-gel derived SiO2 gels in the early stage of conversion to glasses,Journal of Non-Crystalline Solids, 126, pp.68-78.
- [10] J.M. Nedelec; L.L. Hench (1999), Ab initio molecular orbital calculations on silica rings,Journal of Non-Crystalline Solids, 255, pp.163-170.
- [11] P. Innocenzi (2003), Infrared spectroscopy of sol-gel derived silica-based films: a spectra microstructure overview,Journal of Non-Crystalline Solids,316, pp.309-319.
- [12] M.J. Adeogun; J.N. Hay (2001), Structure control in sol-gel silica synthesis using ionene polymers. 2: evidence f-rom spectroscopic analysis,Journal of Sol-Gel Science and Technology, 20, pp.119-128.
- [13] S. Timmusk; G. Seisenbaeva; L. Behers (2018), Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria,Science Report, 8, p.617.
- [14] N.G.M. Palmqvist; S. Bejai; J. Meijer; G.A. Seisenbaeva; V.G. Kessler (2015), Nano titania aided clustering and adhesion of benefcial bacteria to plant roots to enhance crop growth and stress management,Science Report, 5, p.10146.
- [15] D.W. Galbraith (2007), Silica breaks through in plants,Nature Nanotechnology, 2, pp.272-273.
- [16] H.A. Currie; C.C. Perry (2007), Silica in plants: biological, biochemical and chemical studies,Annals of Botany, 100, pp.1383- 1389.
- [17] J.F. Ma; N. Yamaji (2006), Silicon uptake and accumulation in higher plants,Trends in Plant Science, 11, pp.392-397.
- [18] E. Epstein (1999), Silicon,Annual Review of Plant Physiology and Plant Molecular Biology, 50, pp.641-664.
- [19] P.R. De Gregorio; G. Michavila; L. Ricciardi Muller; C. de Souza Borges; M.F. Pomares; E.L. Saccol de Sá; C. Pereira; P.A. Vincent (2017), Beneficial rhizobacteria immobilized in nanofibers for potential application as soybean seed bioinoculants,PLoS One, 12, p.e0176930.
- [20] E. Eymard-Vernain; S. Luche; T. Rabilloud; C. Lelong (2018), Impact of nanoparticles on the Bacillus subtilis GB03(3610) competence,Scientific Report, 8, p.2984.