Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  30,508,026
  • Công bố khoa học và công nghệ Việt Nam

Khoa học giáo dục học nói chung, bao gồm cả đào tạo, sư phạm học, lý luận giáo dục,..

Phùng Thái Thiên Trang, Fukuzawa Masayuki, Lý Quốc Ngọc(1)

Tổng quan về phương pháp học thuộc tính mặt người

An overview of facial attribute learning

Tạp chí Khoa học - Đại học Sư phạm TP Hồ Chí Minh

2021

3

572-591

1859-3100

Thuộc tính mặt người là thông tin hữu ích cho việc xây dựng các ứng dụng như nhận dạng, tìm kiếm và giám sát khuôn mặt người. Do đó, chúng rất quan trọng đối với các nhiệm vụ phân tích khuôn mặt khác nhau. Nhiều thuật toán học thuộc tính khuôn mặt người đã và đang được phát triển để tự động phát hiện các thuộc tính trong nhiều năm qua. Trong bài báo này, chúng tôi khảo sát một số phương pháp điển hình về học thuộc tính khuôn mặt người. Chúng tôi chia ra năm loại chính của các phương pháp: (1) Học truyền thống, (2) Học sâu đơn nhiệm, (3) Học sâu đa nhiệm, (4) Giải quyết vấn đề mất cân bằng dữ liệu và (5) Thuộc tính khuôn mặt dựa vào phả hệ tri thức. Các phương pháp bao gồm từ học truyền thống đến học sâu, cùng với các phương pháp hỗ trợ giải quyết bài toán lỗ hổng ngữ nghĩa dựa trên phả hệ tri thức và giải quyết sự mất cân bằng dữ liệu. Đối với mỗi phương pháp trong mỗi loại, chúng tôi thảo luận về các lí thuyết cơ bản cũng như điểm mạnh, điểm yếu và sự khác biệt của chúng. Chúng tôi cũng so sánh hiệu suất của chúng trên bộ dữ liệu tiêu chuẩn. Cuối cùng, dựa trên đặc điểm và đóng góp của các phương pháp, chúng tôi đưa ra kết luận và hướng nghiên cứu trong tương lai để giải quyết vấn đề học thuộc tính khuôn mặt. bài khảo sát này sẽ giúp các nhà nghiên cứu có góc nhìn tổng quan nhanh để xây dựng các ứng dụng khuôn mặt người trong tương lai cũng như các nghiên cứu mới.

Facial attributes are useful for developing applications such as face recognition, search, and surveillance. They are therefore important for various facial analysis. Many facial attribute learning algorithms have been developed to automatically detect those key attributes over the years. In this paper, we have surveyed some typical facial attribute learning methods. Five major categories of the state-of-the-art methods are identified: (1) Traditional learning, (2) Deep Single Task Learning, (3) Deep Multitask Learning, (4) Imbalanced Data Solver, and (5) Facial Attribute Ontology. They included from traditional learning algorithm to deep learning, along with methods that assist in solving semantic gaps based on ontology and solving data imbalances. For each algorithm of category, basic theories as well as their strengths, weaknesses, and differences are discussed. We also compared their performance on the standard datasets. Finally, based on characteristics and contribution of methods, we present conclusion and future works to solve facial attributes learning. The survey can help researchers gain a quick overview to build future human face applications as well as further studies.

TTKHCNQG, CTv 138

  • [1] Zhong, Y., Sullivan, J., & Li, H. (2016), Leveraging mid-level deep representations for predicting face attributes in the wild,Proceedings - ICIP, 2016-Augus, 3239-3243.
  • [2] Zheng, X., Guo, Y., Huang, H., Li, Y., & He, R. (2018), A Survey to Deep Facial Attribute Analysis.,Retrieved f-rom http://arxiv.org/abs/1812.10265
  • [3] Zhang, Z., Song, Y., & Qi, H. (2017), Age Progression / Regression by Conditional Adversarial Autoencoder,5810-5818
  • [4] Zhang, Y., & Yang, Q. (2018), A Survey on Multi-Task Learning,1-20.
  • [5] Zhang, N., Paluri, M., Ranzato, M. A., Darrell, T., Bourdev, L., & Berkeley, U. C. (2014), PANDA : Pose Aligned Networks for Deep Attribute Modeling.,
  • [6] Yang, H., Huang, D., Wang, Y., & Jain, A. K. (2018), Learning Face Age Progression : A Pyramid Architecture of GANs.,CVPR, 31-39.
  • [7] Xu, M., Chen, F., Li, L., Shen, C., Lv, P., Zhou, B., & Ji, R. (2018), Bio-Inspired Deep Attribute Learning Towards Facial Aesthetic Prediction.,IEEE Transactions on Affective Computing.
  • [8] Xiaohua, W., Muzi, P., Lijuan, P., Min, H., Chunhua, J., & Fuji, R. (2019), Two-level attention with two-stage multi-task learning for facial emotion recognition,J. Vis. Commun. Image Represent., 62, 217-225. https://doi.org/10.1016/j.jvcir.2019.05.009
  • [9] Xiao, T., Tsai, Y.-H., Sohn, K., Chandraker, M., & Yang, M.-H. (2019), Adversarial Learning of Privacy-Preserving and Task-Oriented Representations,http://arxiv.org/abs/1911.10143
  • [10] Wiles, O., Sophia Koepke, A., & Zisserman, A (2019), Self-supervised learning of a facial attribute embedding f-rom video,British Machine Vision Conference 2018, BMVC 2018.
  • [11] Wang, Z., He, K., & Fu, Y. (2017), Multi-task Deep Neural Network for Joint Face Recognition and Facial Attribute Prediction,ICMR’17, 365-374.
  • [12] Wang, Y., Gan, W., Yang, J., Wu, W., & Yan, J. (2019), Dynamic Curriculum Learning for Imbalanced Data Classification, (2), 5017-5026,http://arxiv.org/abs/1901.06783
  • [13] Wang, S., Yin, S., Hao, L., & Liang, G. (2021), Multi-task face analyses through adversarial learning.,Pattern Recognition, 114, 107837. https://doi.org/10.1016/j.patcog.2021.107837
  • [14] Wang, P., Su, F., Zhao, Z., Guo, Y., Zhao, Y., & Zhuang, B. (2019), Deep class-skewed learning for face recognition,Neurocomputing, 363, 35-45.
  • [15] Wang, P., Su, F., & Zhao, Z. (2017), Joint Multi-Feature Fusion and Attribute Relationships for Facial Attribute Prediction,,3-6.
  • [16] Wang, J., Cheng, Y., & Feris, R. S. (2016), Walk and Learn: Facial Attribute Representation Learning f-rom Egocentric Video and Contextual Data.,
  • [17] Wan, L., Wan, J., Jin, Y., Tan, Z., & Li, S. Z. (2018), Fine-grained multi-attribute adversarial learning for face generation of age, gender and ethnicity,Proceedings - 2018 International Conference on Biometrics, ICB 2018, 98-103. https://doi.org/10.1109/ICB2018.2018.00025
  • [18] Tzirakis, P., Trigeorgis, G., Nicolaou, M. A., Schuller, B., & Zafeiriou, S. (2016), End-to-End Multimodal Emotion Recognition using Deep Neural Networks,14(8), 1-9.
  • [19] Tian, Q., Arbel, T., & Clark, J. J. (2017), Deep LDA-Pruned Nets for Efficient Facial Gender Classification,https://doi.org/10.1109/CVPRW.2017.78
  • [20] Taherkhani, F., Nasrabadi, N. M., & Dawson, J. (2018), A Deep Face Identification Network Enhanced by Facial Attributes Prediction,666-673.
  • [21] Sundararajan, K., & Woodard, D. L. (2018), Deep learning for biometrics: A survey,ACM Computing Surveys, 51(3). https://doi.org/10.1145/3190618
  • [22] Sun, Y., & Yu, J. (2018), General-to-specific learning for facial attribute classification in the wild,J. Vis. Commun. Image Represent., 56, 83-91. https://doi.org/10.1016/j.jvcir.2018.09.003
  • [23] Ruder, S. (2017), An Overview of Multi-Task Learning in Deep Neural Networks, (May),Retrieved f-rom http://arxiv.org/abs/1706.05098
  • [24] Rudd, E. M., Günther, M., & Boult, T. E. (2016), MOON: A mixed objective optimization network for the recognition of facial attributes.,Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9909
  • [25] Pini, S., Ahmed, O. Ben, Cornia, M., Baraldi, L., Cucchiara, R., & Huet, B. (2017), Modeling Multimodal Cues in a Deep Learning-based Framework for Emotion Recognition in the Wild.,Proceedings of the 19th ACM International Conference on Multimodal Interaction.
  • [26] Penghui, S., Hao, L., Xin, W., Zhenhua, Y., & Wu, S. (2019), Similarity-aware deep adversarial learning for facial age estimation.,Proc. - IEEE Int. Conf. Multimed. Expo, 2019-July.
  • [27] Nguyen, H. M., Ly, N. Q., & Phung, T. T. T. (2018), Large-Scale Face Image Retrieval System at attribute level based on Facial Attribute Ontology and Deep Neuron Network,
  • [28] Mirjalili, V., Raschka, S., & Ross, A. (2020), PrivacyNet: Semi-Adversarial Networks for Multiattribute Face Privacy, 1-3,Retrieved f-rom http://arxiv.org/abs/2001.00561
  • [29] Mezaris, V., Kompatsiaris, I., & Strintzis, M. G (2004), An ontology approach to object-based image retrieval, II-511-514,https://doi.org/10.1109/icip.2003.1246729
  • [30] Matthews, B. W. (1975), Comparison of the predicted and observed secondary structure of T4 phage lysozyme.,BBA - Protein Structure, 405(2), 442-451.
  • [31] Maillot, N. (2005), Ontology Based Object Learning and Recognition,
  • [32] Mahbub, U., Sarkar, S., & Chellappa, R. (2018), Segment-based Methods for Facial Attribute Detection f-rom Partial Faces, 1-13.,Retrieved f-rom http://arxiv.org/abs/1801.03546
  • [33] Ly, N. Q., Cao, H. N.M., Nguyen, T. T (2020), Person Re-Identification System at Semantic Level based on Pedestrian Attributes Ontology,International Journal of Advanced Computer Science and Applications (IJACSA), 11(2), 2020.
  • [34] Ly, N. Q., Do, T. K., & Nguyen, B. X. (2019), Large-scale coarse-to-fine object retrieval ontology and deep local multitask learning.,Computational Intelligence and Neuroscience, 2019.
  • [35] Loy, C. C., Luo, P., & Huang, C. (2017), Deep Learning Face Attributes for Detection and Alignment.,https://doi.org/10.1007/978-3-319-50077-5
  • [36] Liu, Z., Luo, P., Wang, X., & Tang, X. (2015), Deep learning face attributes in the wild.,Proceedings of the IEEE International Conf on Computer Vision, 2015 Inter, 3730-3738.
  • [37] Liu, Y., Wei, F., Shao, J., Sheng, L., Yan, J., & Wang, X. (2018), Exploring Disentangled Feature Representation Beyond Face Identification,2080-2089
  • [38] Lin, H. H., Chiang, W. C., Yang, C. T., Cheng, C. T., Zhang, T., & Lo, L. J. (2021), On construction of transfer learning for facial symmetry assessment before and after orthognathic surgery.,Computer Methods and Programs in Biomedicine, 200.
  • [39] Lin, C.-H., Chen, Y.-Y., Chen, B.-C., Hou, Y.-L., & Hsu, W. (2014), Facial Attribute Space Compression by Latent Human Topic Discovery,Proc. ACM Int. Conf. Multimed. - MM ’14
  • [40] Liao, S., Shen, D., & Chung, A. C. S. (2014), A Markov Random Field Groupwise Registration Framework for Face Recognition,36(4)
  • [41] Liang, X., Xu, L., Liu, J., Liu, Z., Cheng, G., Xu, J., & Liu, L. (2021), Patch attention layer of embedding handcrafted features in CNN for facial expression recognition.,Sensors
  • [42] Li, Y., Wang, Q., Nie, L., & Cheng, H. (2017), Face Attributes Recognition via Deep Multi-Task Cascade.,Proc. 2017 Int. Conf. Data Mining, Commun. Inf. Technol. - DMCIT ’17, 5-9
  • [43] Li, J., Zhao, F., Feng, J., Roy, S., Yan, S., & Sim, T. (2018), Landmark free face attribute prediction,IEEE Transactions on Image Processing, 27(9), 4651-4662
  • [44] Li, H., Sun, J., & Xu, Z. (2017), Multimodal 2D + 3D Facial Expression Recognition with Deep Fusion Convolutional Neural Network,9210(c), 1-16.
  • [45] Li, D., Zhang, M., Zhang, L., Chen, W., & Feng, G. (2021), A novel attribute-based generation architecture for facial image editing.,Multimedia Tools and Applications, 80(4), 4881-4902.
  • [46] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998), Gradient-Based Learning Applied to Document Recognition,Proceedings of the IEEE, 86, 2278-2324
  • [47] Lee, M. K., Choi, D. Y., & Song, B. C. (2019), Facial expression recognition via relation-based conditional generative adversarial network.,ICMI 2019 - Proceedings of the 2019 International Conference on Multimodal Interaction, 35-39
  • [48] Kumar, N., Member, S., Berg, A. C., Belhumeur, P. N., & Nayar, S. K. (2011), Describable Visual Attributes for Face Verification and Image Search,1-17
  • [49] Kalayeh, M. M., Gong, B., & Shah, M. (2017), Improving Facial Attribute Prediction using Semantic Segmentation,6942-6950. https://doi.org/10.1109/CVPR.2017.450
  • [50] Kahou, S. E., Michalski, V., Konda, K., Memisevic, R., & Pal, C. (2015), Recurrent neural networks for emotion recognition in video,ICMI 2015 - Proceedings of the 2015 ACM International Conference on Multimodal Interaction, 467-474.
  • [51] Johnson, J. M., & Khoshgoftaar, T. M. (2019), Survey on deep learning with class imbalance,Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0192-5
  • [52] Jiang, J., Wang, C., Liu, X., & Ma, J. (2021), Deep Learning-based Face Super-resolution: A Survey,Retrieved f-rom http://arxiv.org/abs/2101.03749
  • [53] Jadhav, A., Namboodiri, V. P., & Venkatesh, K. S. (2016), Deep Attributes for One-Shot Face Recognition.,ECCV Workshops, (3), 516-523. https://doi.org/10.1007/978-3-319-49409-8_44
  • [54] Illendula, A., & Sheth, A. (2019), Multimodal emotion classification,The Web Conference 2019 - Companion of the World Wide Web Conference, WWW 2019, 2, 439-449
  • [55] Hupont, I., & Fernández, C. (2019), DemogPairs: Quantifying the impact of demographic imbalance in deep face recognition,Proc. - 14th IEEE Int. Conf. FG 2019
  • [56] Hudelot, C (2008), Towards a Cognitive Vision Platform for Semantic Image Interpretation; Application to the Recognition of Biological Organisms,280
  • [57] Huang, C., Li, Y., Loy, C. C., & Tang, X. (2018), Deep Imbalanced Learning for Face Recognition and Attribute Prediction, 1-14,Retrieved f-rom http://arxiv.org/abs/1806.00194
  • [58] Huang, C., Li, Y., Loy, C. C., & Tang, X. (2016), Learning Deep Representation for Imbalanced Classification.,IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6.
  • [59] Hsieh, H.-L., Hsu, W., & Chen, Y.-Y. (2017), Multi-task learning for face identification and attribute estimation,1, 2981-2985
  • [60] Hsieh, H.-L., Hsu, W., & Chen, Y.-Y. (2017), Multi-task learning for face identification and attribute estimation,IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2981-2985
  • [61] He, Z., Zuo, W., Member, S., Kan, M., Shan, S., Member, S., & Chen, X. (2018), AttGAN : Facial Attribute Editing by Only Changing What You Want,1-16
  • [62] He, K., Wang, Z., Fu, Y., Feng, R., Jiang, Y. G., & Xue, X. (2017), Adaptively weighted multi-task deep network for person atribute classification.,2017 ACM Multimed. Conf., 1636-1644.
  • [63] He, K., Fu, Y., & Xue, X. (2017), A Jointly Learned Deep Architecture for Facial Attribute Analysis and Face Detection in the Wild.,Retrieved f-rom http://arxiv.org/abs/1707.08705
  • [64] He, H., & Garcia, E. A. (2009), Learning f-rom imbalanced data.,Ieee Transactions On Knowledge And Data Engineering, 21(9), 1263-1284.
  • [65] Haque, M. A., Bautista, R. B., Noroozi, F., Kulkarni, K., Laursen, C. B., Irani, R.,… Moeslund, T. B. (2018), Deep Multimodal Pain Recognition : A Database and Comparison of SpatioTemporal Visual Modalities,IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), 250-257. https://doi.org/10.1109/FG.2018.00044
  • [66] Hand, E. M., & Chellappa, R. (2016), Attributes for Improved Attributes: A Multi-Task Network for Attribute Classification, 8057–8058,Retrieved f-rom http://arxiv.org/abs/1604.07360
  • [67] Hand, E. M., Castillo, C., & Chellappa, R. (2018), Doing the best we can with what we have: Multilabel balancing with se-lective learning for attribute prediction.,32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 6878-6885.
  • [68] Han, H., Jain, A. K., Shan, S., & Chen, X. (2017), Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach,Proc. 12th IEEE Int. Conf. Autom. Face Gesture Recognit., 8828(c), 1-14. https://doi.org/10.1109/TPAMI.2017.2738004
  • [69] Gupta, N., Gupta, A., Joshi, V., Subramaniam, L. V., & Mehta, S. (2017), Deep Attribute Driven Image Similarity Learning Using Limited Data.,Proceedings - 2017 IEEE International Symposium on Multimedia, ISM 2017, 2017-Janua, 146-153
  • [70] Günther, M., Rozsa, A., & Boult, T. E. (2017), AFFACT - Alignment Free Facial Attribute Classification Technique,Fg, 90-99.
  • [71] Gruber, T. R. (1993), Toward principles for the design of ontologies used for knowledge sharing,International Journal of Human - Computer Studies, 43(5-6), 907-928.
  • [72] Gauthier, J. (2014), Conditional generative adversarial nets for convolutional face generation.,Class Project for Stanford CS231N: Convolutional Neural Networks for Visual Recognition, Winter Semester 2014.
  • [73] Gao, Z., & Wang, S. (2015), Multiple Aesthetic Attribute Assessment by Exploiting Relations Among Aesthetic Attributes,575-578.
  • [74] Fanhe, X., Guo, J., Huang, Z., Qiu, W., & Zhang, Y. (2019), Multi-task learning with knowledge transfer for facial attribute classification.,Proc. IEEE Int. Conf. Ind. Technol., 2019-Febru, 877-882. https://doi.org/10.1109/ICIT.2019.8755180
  • [75] Fan, D., Kim, H., Kim, J., Liu, Y., & Huang, Q. (2019), Multi-task learning using task dependencies for face attributes prediction.,Appl. Sci., 9(12).
  • [76] Everingham, M., & Zisserman, A. (2006), Regression and classification approaches to eye localization in face images,7th International Conference on Automatic Face and Gesture Recognition FGR06, pages, 441-448. https://doi.org/10.1109/FGR.2006.90
  • [77] Ehrlich, M., Shields, T. J., Almaev, T., & Amer, M. R. (2016), Facial Attributes Classification Using Multi-task Representation Learning.,IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 752-760
  • [78] Duong, C. N., Quach, K. G., Luu, K., Le, T. H. N., & Savvides, M. (2017), Temporal Non-volume Preserving Approach to Facial Age-Progression and Age-Invariant Face Recognition.,Proceedings of the IEEE International Conference on Computer Vision, 2017-Octob, 3755-3763. https://doi.org/10.1109/ICCV.2017.403
  • [79] Dornaika, F., Bekhouche, S. E., & Arganda-Carreras, I. (2020), Robust regression with deep CNNs for facial age estimation: An empirical study,Expert Syst. Appl., 141
  • [80] Dong, Q., Gong, S., & Zhu, X. (2017), Class Rectification Hard Mining for Imbalanced Deep Learning.,Proceedings of the IEEE International Conference on Computer Vision, 2017- Octob, 1869-1878. https://doi.org/10.1109/ICCV.2017.205
  • [81] Do, T. T., & Le, T. H. (2009), Facial feature extraction using geometric feature and independent component analysis.,Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5465 LNAI, 231-241.
  • [82] Ding, H., Zhou, S. K., & Chellappa, R. (2017), FaceNet2ExpNet : Regularizing a Deep Face Recognition Net for Expression Recognition,118-126. https://doi.org/10.1109/FG.2017.23
  • [83] Demirkus, M., Precup, D., Clark, J., & Arbel, T. (2015), Hierarchical Spatio-Temporal Probabilistic Graphical Model with Multiple Feature Fusion for Estimating Binary Facial Attribute Classes in Real-World Face Videos.,IEEE Transactions on Pattern Analysis and Machine Intelligence, 8828(FEBRUARY 2014), 1-22
  • [84] Contreras, R., Starostenko, O., Alarcon-Aquino, V., & Flores-Pulido, L. (2010), Facial feature model for emotion recognition using fuzzy reasoning.,Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 6256 LNCS, 11-21.
  • [85] Chen, Y. Y., Hsu, W. H., & Liao, H. Y. M. (2013), Automatic training image acquisition and effective feature se-lection f-rom community-contributed photos for facial attribute detection.,IEEE Trans. Multimed., 15(6), 1388-1399. https://doi.org/10.1109/TMM.2013.2250492
  • [86] Chen, H., Gallagher, A. C., & Girod, B. (2014), The Hidden Sides of Names—Face Modeling with First Name Attributes.,Pattern Analysis and Machine Intelligence, IEEE Transactions On, 36(9), 1860-1873. https://doi.org/10.1109/TPAMI.2014.2302443
  • [87] Chen, D., Cao, X., Wipf, D., Wen, F., & Sun, J. (2016), An Efficient Joint Formulation for Bayesian Face Verification,IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(1), 32-46, https://doi.org/10.1109/TPAMI.2016.2533383
  • [88] Chen, D., Cao, X., Wang, L., Wen, F., & Sun, J. (2012), Bayesian face revisited: A joint formulation,Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7574 LNCS(PART 3), 566-579.
  • [89] Chen, B., Chen, Y., Kuo, Y., Hsu, W. H., & Member, S. (2013), Scalable Face Image Retrieval Using Attribute-Enhanced Sparse Codewords.,IEEE Transactions on Multimedia, 15(5), 1163-1173.
  • [90] Chang, W.-Y., Hsu, S.-H., & Chien, J.-H. (2017), FATAUVA-Net: An Integrated Deep Learning Framework for Facial Attribute Recognition, Action Unit Detection, and Valence-Arousal Estimation,2017 IEEE Conference on CVPRW, 1963-1971
  • [91] Chan, J.-S., Hsu, G.-S. (Jison), Shie, H.-C., & Chen, Y.-X. (2017), Face recognition by facial attribute assisted network.,ICIP, 3825-3829.
  • [92] Celona, L., Bianco, S., & Schettini, R. (2018), Fine-grained face annotation using deep Multi-Task CNN,Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082666
  • [93] Cao, J., Li, Y., & Zhang, Z. (2018), Partially Shared Multi-task Convolutional Neural Network with Local Constraint for Face Attribute Learning.,Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 4290-4299.
  • [94] Bozorgtabar, B., Rad, M. S., Ekenel, H. K., & Thiran, J.-P. (2019), Learn to synthesize and synthesize to learn.,Computer Vision and Image Understanding, 185(June 2018), 1-11.
  • [95] Bashar, R., Kang, S. K., Dawadi, P. R., & Rhee, P. K. (2007), A Context-Aware Statistical Ontology Approach for Adaptive Face Recognition. Convergence of Bioscience and Information Technologies,Jeju, Korea (South), 2007, 698-703. doi: 10.1109/FBIT.2007.112
  • [96] B, Y. L., Tai, Y., & Tang, C. (2018), Attribute-Guided Face Generation Using Conditional CycleGAN (Vol. 3951),https://doi.org/10.1007/11744023
  • [97] An, L., Zou, C., Zhang, L., & Denney, B. (2015), Scalable attribute-driven face image retrieval.,Neurocomputing, 172, 215–224. https://doi.org/10.1016/j.neucom.2014.09.098
  • [98] Alorf, A., & Abbott, A. L. (2018), In defense of low-level structural features and SVMs for facial attribute classification: Application to detection of eye state, Mouth State, and eyeglasses in the wild.,IEEE International Joint Conf on Biometrics, IJCB 2017, 2018-Janua, 599-607
  • [99] Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S.,… Asari, V. K (2019b), A state-of-the-art survey on deep learning theory and architectures,Electronics.
  • [100] Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Asari, V. K. (2019a), A state-of-the-art survey on deep learning theory and architectures,Electronics.
  • [101] Akbir, K., & Mahmoud, M. (2019), Considering race a problem of transfer learning.,Proceedings - 2019 IEEE Winter conf WACVW 2019, 100-106.
  • [102] Ahmed, M., & B, S. V. (2019), Optimization for Facial Age Estimation (Vol. 2).,https://doi.org/10.1007/978-3-030-27272-2