Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  21,959,582
  • Công bố khoa học và công nghệ Việt Nam

Vật lý plasma và chất lỏng

Mẫn Minh Tân(1), Lê Quốc Duy, Đỗ Quang Tâm(2), Võ Thị Tuyết Vi, Lê Anh Thi, Nguyễn Minh Hoa

Sự phụ thuộc của năng lượng vùng cấm vào thành phần các chất trong nano tinh thể ba thành phần CdSexS1-x không chứa phosphine

Tạp chí Khoa học và Công nghệ (Đại học Duy Tân)

2020

4

106-112

1859-4905

Các nano tinh thể (NC) ba thành phần CdSexS1-x với x thay đổi (0 ≤ x ≤ 1) đã được chế tạo bằng kỹ thuật bơm nóng các tiền chất. Sự có mặt của các nguyên tố Cadimi, Lưu huỳnh, Selen và sự hình thành các NC CdSexS1-x đã được xác định thông qua phổ tán sắc năng lượng tia X (EDS) và giản đồ nhiễu xạ tia X (XRD). Cấu trúc tinh thể của các NC thu được thể hiện pha giả kẽm. Phổ hấp thụ và huỳnh quang được sử dụng để phân tích sự phụ thuộc của năng lượng vùng cấm vào thành phần x trong NC. Với các tỷ lệ SeS khác nhau thì năng lượng vùng cấm NC CdSexS1-x thay đổi trong khoảng từ 1,96 eV đến 2,83 eV. Do đó, màu sắc phát xạ của chúng cũng biến đổi từ màu xanh sang đỏ khi x thay đổi từ 0 đến 1.

TTKHCNQG, CVv 416

  • [1] Denton A R and Ashcroft N W (1991), Vegards law,Phys. Rev. A 43 3161-6
  • [2] Ramírez-Herrera D E, Rodríguez-Velázquez E, Alatorre-Meda M, Paraguay-Delgado F, TiradoGuízar A, Taboada P and Pina-Luis G (2018), NIRemitting alloyed CdTeSe QDs and organic dye assemblies: A nontoxic, stable, and efficient FRET system,Nanomaterials 8 231,1-14
  • [3] Ouyang J, Vincent M, Kingston D, Descours P, Boivineau T, Zaman B, Wu X and Yu K (2009), Noninjection, one-pot synthesis of photoluminescent colloidal homogeneously alloyed CdSeS quantum dots,J. Phys. Chem. C 113 5193–200
  • [4] Swafford L A, Weigand L A, Bowers M J, McBride J R, Rapaport J L, Watt T L, Dixit S K, Feldman L C and Rosenthal S J (2006), Homogeneously alloyed CdSxSe1-x nanocrystals: Synthesis, c-haracterization, and composition/sizedependent band gap,J. Am. Chem. Soc. 128 12299306
  • [5] Gurusinghe N P, Hewa-Kasakarage N N and Zamkov M (2008), Composition-tunable properties of CdSxTe1-x alloy nanocrystals,J. Phys. Chem. C 112 12795–800
  • [6] Swafford L A, Weigand L A, Bowers M J, McBride J R, Rapaport J L, Watt T L, Dixit S K, Feldman L C and Rosenthal S J (2006), Homogeneously alloyed CdSxSe1-x nanocrystals: Synthesis, c-haracterization, and composition/sizedependent band gap,J. Am. Chem. Soc. 128 12299306
  • [7] Elbaum R, Vega S and Hodes G (2001), Preparation and surface structure of nanocrystalline cadmium sulfide (Sulfoselenide) precipitated f-rom dimethyl sulfoxide solutions,Chem. Mater. 13 2272–80
  • [8] Zhang J, Yang Q, Cao H, Ratcliffe C I, Kingston D, Chen Q Y, Ouyang J, Wu X, Leek D M, Riehle F S and Yu K (2016), Bright Gradient-Alloyed CdSexS1-x Quantum Dots Exhibiting Cyan-Blue Emission,Chem. Mater. 28 618–25
  • [9] Chen X, Hutchison J L, Dobson P J and Wakefield G (2010), Tuning the internal structures of CdSeS nanoparticles by using different selenium and sulphur precursors,Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 166 14–8
  • [10] Sussman S S, Alben R, Selders M, Chang R K and Callender R H (1973), Wavelength and concentration dependence of Raman scattering f-rom CdS1-xSex,Solid State Commun. 13 799–802
  • [11] Hassanien A S and Akl A A (2016), Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films,Superlattices Microstruct. 89 153–69
  • [12] Tang L, Zhang C L, Song G M, Jin X and Xu Z W (2013), In vivo skin penetration and metabolic path of quantum dots,Sci. China Life Sci. 56 181–8
  • [13] Hossain M A, Jennings J R, Mathews N and Wang Q (2012), Band engineered ternary solid solution CdS xSe 1-x-sensitized mesoscopic TiO 2 solar cells,Phys. Chem. Chem. Phys. 14 7154–61
  • [14] Zheng Y, Yang Z and Ying J Y (2007), Aqueous synthesis of glutathione-capped ZnSe and Zn1-xCd xSe alloyed quantum dots,Adv. Mater. 19 1475–9
  • [15] Tatikondewar L and Kshirsagar A (2017), Theoretical investigation of energy gap bowing in CdSxSe1-x alloy quantum dots,Phys. Chem. Chem. Phys. 19 14495–502
  • [16] Al-Rasheedi A, Wageh S, Al-Zhrani E and AlGhamdi A (2017), Structural and optical properties of CdZnTe quantum dots capped with a bifunctional Molecule,J. Mater. Sci. Mater. Electron. 28 911425
  • [17] Zhang C, Fu X, Peng Z, Gao J, Xia Y, Zhang J, Luo W, Li H, Wang Y and Zhang D (2018), Phosphine-free synthesis and optical stabilities of composition-tuneable monodisperse ternary PbSe1-: XSx alloyed nanocrystals via cation exchange,CrystEngComm 20 2519–27
  • [18] Pal R, Dutta J, Chaudhuri S and Pal A K (1993), CdSxTe1-x films: Preparation and properties,J. Phys. D. Appl. Phys. 26 704–10
  • [19] Feng Z C, Becla P, Kim L S, Perkowitz S, Feng Y P, Poon H C, Williams K P and Pitt G D (1994), Raman, infrared, photoluminescence and theoretical studies of the II-VI-VI ternary CdSeTe,J. Cryst. Growth 138 239–43
  • [20] Chung Y C, Yang C H, Zheng H W, Tsai P S and Wang T L (2018), Synthesis and c-haracterization of CdS: XSe1- x alloy quantum dots with compositiondependent band gaps and paramagnetic properties,RSC Adv. 8 30002–11
  • [21] Zhang H, Wang F, Kuang Y, Li Z, Lin Q, Shen H, Wang H, Guo L and Li L S (2019), Se/S RatioDependent Properties and Application of GradientAlloyed CdSe1-xSx Quantum Dots: Shell-free Structure, Non-blinking Photoluminescence with Single-Exponential Decay, and Efficient QLEDs,ACS Appl. Mater. Interfaces 11 6238–47
  • [22] Hamachi L S, Yang H, Jen-La Plante I, Saenz N, Qian K, Campos M P, Cleveland G T, Rreza I, Oza A, Walravens W, Chan E M, Hens Z, Crowther A C and Owen J S (2019), Precursor reaction kinetics control compositional grading and size of CdSe1-xSx nanocrystal heterostructures,Chem. Sci. 10 6539–52
  • [23] Zhou R, Wan L, Niu H, Yang L, Mao X, Zhang Q, Miao S, Xu J and Cao G (2016), Tailoring band structure of ternary CdSxSe1-x quantum dots for highly efficient sensitized solar cells,Sol. Energy Mater. Sol. Cells 155 20–9
  • [24] Mirnajafizadeh F, Ramsey D, McAlpine S, Wang F and Stride J A (2019), Nanoparticles for bioapplications: Study of the cytotoxicity of water dispersible CdSe(S) and CdSe(S)/ZnO quantum dots,Nanomaterials 9
  • [25] Zhong X, Feng Y, Knoll W and Han M (2003), Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width,J. Am. Chem. Soc. 125 13559–63
  • [26] Talapin D V., Lee J S, Kovalenko M V. and Shevchenko E V. (2010), Prospects of colloidal nanocrystals for electronic and optoelectronic applications,Chem. Rev. 110 389–458
  • [27] Lohse S E and Murphy C J (2012), Applications of colloidal inorganic nanoparticles: F-rom medicine to energy,J. Am. Chem. Soc. 134 15607–20
  • [28] Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A and Alivisatos A P (2000), Shape control of CdSe nanocrystals,Nature 404 59–61
  • [29] Verma M, Patidar D, Sharma K B and Saxena N S (2015), Synthesis, c-haracterization and optical properties of CdSe and ZnSe quantum dots,J. Nanoelectron. Optoelectron. 10 320–6
  • [30] Lu J, Liu H, Zhang X and Sow C H (2018), Onedimensional nanostructures of II-VI ternary alloys: Synthesis, optical properties, and applications,Nanoscale 10 17456–76
  • [31] Rogach A L (2008), Semiconductor nanocrystal quantum dots synthesis, assembly, spectroscopy and applications,
  • [32] Koole R, Groeneveld E, Vanmaekelbergh D, Meijerink A and De Mello Donegá C (2014), Size effects on semiconductor nanoparticles,vol Nanoparticles 13-51