Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,032,913
  • Công bố khoa học và công nghệ Việt Nam

Kỹ thuật hóa học

Cao Lưu Ngọc Hạnh, Nguyễn Thị Bích Thuyền, Lương Huỳnh Vủ Thanh(1), Đặng Huỳnh Giao, Phạm Trần Trúc Linh, Phạm Mai Hương

Nghiên cứu gia công khẩu trang kháng bức xạ cực tím từ sợi chuối

Study on fabrication process of ultraviolet-resistant mask from banana fibers

Khoa học (Đại học Cần Thơ)

2022

2

66-76

1859-2333

Nghiên cứu trình bày quy trình gia công khẩu trang thân thiện môi trường từ sợi chuối và đánh giá khả năng kháng bức xạ UV của khẩu trang thông qua khảo sát các yếu tố ảnh hưởng. Cấu trúc mặt cắt ngang và trên bề mặt của sợi chuối được quan sát thông qua kính hiển vi điện tử quét. Các yếu tố ảnh hưởng (gồm nhiệt độ ép, thời gian ép) để gia công khẩu trang đã được khảo sát. Để cải thiện khả năng kháng bức xạ UV của khẩu trang, một lượng muối lignin đã được bổ sung hoặc tăng bề dày tấm sợi. Khẩu trang từ sợi chuối đã được gia công thành công với khả năng sàng lọc bức xạ UV tối đa là 50,88% trong điều kiện gia công như: nhiệt độ ép tấm sợi là 130ºC, thời gian ép là 20 phút, thể tích muối lignin là 30 mL, bề dày tấm sợi là 3 mm. Hơn nữa, việc gia công thành công khẩu trang từ sợi chuối có khả năng kháng bức xạ UV đã tạo tiền đề cho những nghiên cứu tiếp theo về khẩu trang thân thiện môi trường.

The study presents the fabrication process of eco-friendly masks from banana fibers and evaluates the UV-resistance of the masks through investigating the influencing factors. The cross-sectional and surface structures of banana fibers were observed through scanning electron microscopy. The influencing factors (including pressing temperature, pressing time) for mask processing were investigated. To improve the UVresistance of the mask, a lignin salt was added or increased the fiber mat thickness. Banana-fiber masks have been processed successfully with a maximum UV-resistant capacity of 50.88% in processing conditions such as mat sheet pressing temperature 130ºC, pressing time 20 minutes, volume of lignin salt 30 mL, thickness of the mat sheet 3 mm. Moreover, the successful processing of masks from banana fibers that are resistant to UV radiation is a premise for further studies on eco-friendly masks.

TTKHCNQG, CVv 403

  • [1] Zimniewska, M., Kozłowski, R., & Batog, J. (2008), Nanolignin modified linen fabric as a multifunctional product,Molecular Crystals and Liquid Crystals, 484(1), 43-409. https://doi.org/10.1080/15421400801903395
  • [2] Zhang, W., Zhang, Y., Liang, H., Liang, D., Cao, H., Liu, C., & Zhang, C. (2019), High bio-content castor oil based waterborne polyurethane/sodium lignosulfonate composites for environmental friendly UV absorption application,Industrial Crops and Products, 142, 111836. https://doi.org/10.1016/j.indcrop.2019.111836
  • [3] Yearla, S. R. & Padmasree, K. (2016), Preparation and c-haracterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants,Journal of Experimental Nanoscience, 11(4), 289-302. https://doi.org/10.1080/17458080.2015.1055842
  • [4] Tan, S., Liu, D., Qian, Y., Wang, J., Huang, J., Yi, C., Qiu, X., & Qin, Y. (2019), Towards better UV-blocking and antioxidant performance of varnish via additives based on lignin and its colloids,Holzforschung, 73(5), 485-491. https://doi.org/10.1515/hf-2018-0134
  • [5] Subagyo, A., & Chafidz, A. (2018), Banana pseudostem fiber: Preparation, c-haracteristics, and applications,In Banana Nutrition-Function and Processing Kinetics, 1–19
  • [6] Silva, G. G., Souza, D. A., Machado, J. C., & Hourston, D. J. (2000), Mechanical and thermal c-haracterization of native Brazilian coir fiber,Journal of Applied Polymer Science, 76(7), 1197-1206. https://doi.org/10.1002/(SICI)1097- 4628(20000516)76:73.0.CO;2
  • [7] Sadeghifar, H., Venditti, R., Jur, J., Gorga, R. E., & Pawlak, J. J. (2017), Cellulose-lignin biodegradable and flexible UV protection film,ACS Sustainable Chemistry & Engineering, 5(1), 625-631. https://doi.org/10.1021/acssuschemeng.6b02003
  • [8] Sadeghifar, H. & Ragauskas, A. (2020), Lignin as a UV light blocker - a review,Polymers, 12(5), 1134. https://doi.org/10.3390/polym12051134
  • [9] Salamouny, S. E., Shapiro, M., Ling, K. S., & Shepard, B. M. (2009), Black tea and lignin as ultraviolet protectants for the beet armyworm nucleopolyhedrovirus.,Journal of Entomological Science, 44(1), 50-58. https://doi.org/10.18474/0749-8004-44.1.50
  • [10] Rukmanikrishnan, B., Ramalingam, S., Rajasekharan, S. K., & Lee, J. and Lee, J. (2020), Binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: Biocompatibility, antioxidant activity, UV and water barrier properties,International Journal of Biological Macromolecules, 153, 55-62. https://doi.org/10.1016/j.ijbiomac.2020.03.016
  • [11] Ramdhonee, A., & Jeetah, P. (2017), Production of wrapping paper f-rom banana fibres,Journal of Environmental Chemical Engineering, 5(5), 4298-4306. https://doi.org/10.1016/j.jece.2017.08.011
  • [12] Ralph, J., Lapierre, C., & Boerjan, W. (2019), Lignin structure and its engineering,Current Opinion in Biotechnology, 56, 240-249. https://doi.org/10.1016/j.copbio.2019.02.019
  • [13] Qian, Y., Qiu, X., & Zhu, S. (2016), Sunscreen performance of lignin f-rom different technical resources and their general synergistic effect with synthetic sunscreens,ACS Sustainable Chemistry & Engineering, 4(7), 4029-4035. https://doi.org/10.1021/acssuschemeng.6b00934
  • [14] O'Shaughnessy, P. T., Strzelecki, B., OrtizHernandez, M., Aubin, P., & Xuefang Jing (2021), C-haracterization of performance and disinfection resilience of nonwoven filter materials for use in 3D-printed N95 respirators,Journal of Occupational and Environmental Hygiene, 18(6), 265-275. https://doi.org/10.1080/15459624.2021.1913283
  • [15] Muensri, P., Kunanopparat, T., Menut, P., & Siriwattanayotin, S. (2011), Effect of lignin removal on the properties of coconut coir fiber/wheat gluten biocomposite,Composites Part A: Applied Science and Manufacturing, 42(2), 173-179. https://doi.org/10.1016/j.compositesa.2010.11.002
  • [16] Lee, E., Song, Y., & Lee, S. (2019), Crosslinking of lignin/poly (vinyl alcohol) nanocomposite fiber webs and their antimicrobial and ultravioletprotective properties,Textile Research Journal, 89(1), 3-12. https://doi.org/10.1177/0040517517736468
  • [17] Lahlali, R., Brostaux, Y., & Jijakli, M. H. (2011), Control of apple blue mold by the antagonistic yeast Pichia anomala strain K: screening of UV protectants for preharvest application,Plant Disease, 95(3), 311-316. https://doi.org/10.1094/PDIS-04-10-0265
  • [18] Kongkaew, P. (2016), Mechanical properties of banana and coconut fibers reinforced epoxy polymer matrix composites,In International Conference, Tokyo, Japan, 15th January
  • [19] Kaur, R., Bhardwaj, S. K., Chandna, S., Kim, K. H., & Bhaumik, J. (2021), Lignin-based metal oxide nanocomposites for UV protection applications: A review,Journal of Cleaner Production, 128300. https://doi.org/10.1016/j.jclepro.2021.128300
  • [20] Kai, D., Tan, M. J., Chee, P. L., Chua, Y. K., Yap, Y. L., & Loh, X. J. (2016), Towards lignin-based functional materials in a sustainable world,Green Chemistry, 18(1), 175–200. https://doi.org/10.1039/C5GC02616D
  • [21] Ho, K. F., Lin, L. Y., Weng, S. P., & Chuang, K. J. (2020), Medical mask versus cotton mask for preventing respiratory d-roplet transmission in micro environments,Science of the Total Environment, 735, 139510. https://doi.org/10.1016/j.scitotenv.2020.139510
  • [22] Gutiérrez – Hernández, J. M., Escalante, A., Murillo – Vázquez, R. N., Delgado, E., González, F. J., & Toríz, G. (2016), Use of Agave tequilanalignin and zinc oxide nanoparticles for skin photoprotection,Journal of Photochemistry and Photobiology B: Biology, 163, 156-161. https://doi.org/10.1016/j.jphotobiol.2016.08.027
  • [23] Daud, Z., Mohd-Hatta, M. Z., Mohd-Kassim, A. S., Awang, H., & Mohd-Aripin, A. (2014), Exploring of agro waste (pineapple leaf, corn stalk, and napier grass) by chemical composition and morphological study,BioResources, 9(1), 872- 880. https://doi.org/10.15376/biores.9.1.872-880
  • [24] Clinger, J. C. & O'Shaughnessy, P. T. (2019), Breakthrough analysis for filtering facepiece respirators impregnated with activated carbon,Journal of Occupational and Environmental Hygiene, 16(7), 423-431. https://doi.org/10.1080/15459624.2019.1594838
  • [25] Choi, J. H. (2013), An analysis on the application of functional mask for protection in fashion mask,Fashion & Textile Research Journal, 15(6), 851-861. https://doi.org/10.5805/SFTI.2013.15.6.851
  • [26] Averous, L., & Le Digabel, F. (2006), Properties of biocomposites based on lignocellulosic fillers,Carbohydrate Polymers, 66, 480-493. https://doi.org/10.1016/j.carbpol.2006.04.004
  • [27] Aragaw, T. A. (2020), Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario,Marine Pollution Bulletin, 159, 111517. https://doi.org/10.1016/j.marpolbul.2020.111517