



- Công bố khoa học và công nghệ Việt Nam
69
Nuôi trồng thuỷ sản
BB
Đỗ Đăng Khoa, Nguyễn Đắc Hải, Thái Thanh Bình(1), Kim Văn Vạn(2)
Thử nghiệm ương cá chép giống (Cyprinus carpio) bằng công nghệ Biofloc ở các mật độ khác nhau
Experimental nursing of common carp fingerlings (Cyprinus carpio) by using Biofloc technology at different stocking densities
Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên
2023
01
92-99
1859-2171
Mật độ nuôi là yếu tố quan trọng trong nuôi trồng thủy sản. Nghiên cứu này được thực hiện nhằm đánh giá chất lượng môi trường, tốc độ tăng trưởng, tỉ lệ sống và hệ số chuyển hóa thức ăn (FCR) khi ương cá chép (Cyprinus carpio) bằng công nghệ biofloc ở các mật độ khác nhau. Cá chép giống (35,57 ± 1,37 g/con) được ương trong 9 bể (270 L/bể), với 3 nghiệm thức: BFT100 (100 con/m3), BFT150 (150 con/m3) và BFT200 (200 con/m3) được nuôi theo công nghệ biofloc với nguồn carbon từ rỉ đường với tỉ lệ C/N là 20/1. Cá được cho ăn theo nhu cầu bằng thức ăn công nghiệp có hàm lượng protein 35%. Kết quả cho thấy, sau 60 ngày nuôi ở nghiệm thức BFT100 có chất lượng môi trường tốt hơn, tỷ lệ sống (97,53 ± 2,14%), tốc độ tăng trưởng bình quân ngày (0,73 ± 0,04 g/ngày) cao hơn và FCR (1,48 ± 0,01) thấp hơn so với nghiệm thức BFT150 và BFT200, sự khác biệt có ý nghĩa thống kê (P <0,05).
Stocking density is a key factor in aquaculture. This study was conducted to investigate the water quality, growth, survival rates and feed conversion ratio (FCR) when nursing Common carp fingerlings (Cyprinus carpio) by using biofloc technology with different stocking densities. Common carp fingerlings (35.57 ± 1.37 g/fish) were randomly stocked in 9 tanks (270 L/tank), with three experiments as: BFT100 (100 fish/m3), BFT150 (150 fish/m3) and BFT200 (200 fish/m3) were nursed in biofloc system with molasses as a carbon source with C/N ratio of 20/1. Fish was fed on demand with 35% protein diet. The result showed that after 60 days nursing water quality in BFT100 was maintained better than that in BFT150 and BFT200. The survival rate (97.53 ± 2.14%) and average daily weight gain (0.73 ± 0.04 g/day) of common carp in BFT100 were highest compared with the other treatments. Common carp in BFT100 had the lowest FCR (1.48 ± 0.01) (P <0.05) compared to BFT150 (1.55 ± 0.02) and BFT200 (1.69 ± 0.04).
TTKHCNQG, CTv 178
- [1] E. H. Najdegerami; F. Bakhshi; F. B. Lakani (2016), Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system,Fish Physiology and Biochemistry
- [2] A. Ebrahimi; R. Akrami; E. H. Najdegerami; Z. Ghiasvand; H. Koohsari (2020), Effects of different protein levels and carbon sources on water quality, antioxidant status and performance of common carp (Cyprinus carpio) juveniles raised in biofloc based system,Aquaculture
- [3] W. A. Wurts; R. M. Durborow (1992), Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds,Southern Regional Aquaculture Center Publication
- [4] P. S. Furtado; L. H. Poersch; W. Wasielesky (2015), The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT),Aquaculture International
- [5] N. H. Tran; M. N. Tran; V. K. Ly; V. P. Ta (2015), Application of biofloc technology for white leg shrimp (Litopenaeus vannamei) rearing with different densities in an integrated system with tilapia (Oreochromis niloticus),Can Tho University Journal of Science
- [6] C. E. Boyd; C. S. Tucker (2012), Pond aquaculture water quality management,Springer Science & Business Media
- [7] F. P. Serra; C. A. Gaona; P. S. Furtado; L. H. Poersch; W. Wasielesky (2015), Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei,Aquaculture International
- [8] S. Saugata; R. Goutam; M. Lincoln (2019), Studies on production of common carp (Cyprinus carpio) in fresh water biofloc aquaculture system,International Journal of Science and Nature
- [9] S. Sasmal; G. Roy; L. Mandal (2019), Studies on production of common carp (Cyprinus carpio) in fresh water biofloc aquaculture system,International Journal of Science and Nature
- [10] K. Minabi; I. Sourinejad; M. Alizadeh; E. R. Ghatrami; M. H. Khanjani (2020), Effects of different carbon to nitrogen ratios in the biofloc system on water quality, growth, and body composition of common carp (Cyprinus carpio L.) fingerlings,Aquaculture International
- [11] F. Bakhshi; E. H. Najdegerami; R. Manaffar; A. Tukmechi; K. R. Farah (2018), Use of different carbon sources for the biofloc system during the grow-out culture of common carp (Cyprinus carpio L.) fingerlings,Aquaculture
- [12] J. Ekasari; S. Maryam (2012), Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities,Hayati Journal of Biosciences
- [13] W. Wasielesky; C. Froes; G. Fóes; D. Krummenauer; G. Lara; L. Poersch (2013), Nursery of Litopenaeus vannamei reared in a biofloc system: the effect of stocking densities and compensatory growth,Journal of Shellfish Research
- [14] T. T. Chau; T. N. K. Tran; M. T. Pham; V. H. Nguyen; M. A. Cao; N. H. Tran (2021), Effects of light intensity on growth and survival rate of freshwater prawn (Macrobrachium rosenbergii) at larvae and postlarvae stages in biofloc system,Aquaculture, Aquarium, Conservation & Legislation
- [15] M. P. Tran; N. H. Tran (2019), Experimental rearing of Mudskipper (Pseudapocryptes elongatus) by using biofloc technology at different stocking densities,Can Tho University Journal of Science
- [16] T. T. Chau; V. K. Ly; N. H. Tran; Q. V. Le; M. A. Cao; V. T. Phung; H. N. Doan; V. V. Ho (2019), Rearing larvae of the black tiger shrimp (Penaeus monodon) by biofloc technology at different stocking density,Can Tho University Journal of Science
- [17] V. P. Ta; V. B. Nguyen; V. H. Nguyen (2014), Experimental rearing of Pacific white shrimp (Litopenaeus vannamei) by using biofloc technology at different stocking densities and salinity,Can Tho University Journal of Science
- [18] S. Deb; M. T. Noori; P. S. Rao (2020), Application of biofloc technology for Indian major carp culture (polyculture) along with water quality management,Aquacultural Engineering
- [19] G. Liu; Z. Ye; D. Liu; J. Zhao; E. Sivaramasamy; Y. Deng et al. (2018), Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems,Fish & Shellfish Immunology
- [20] H. Fauji; T. Budiardi; J. Ekasari (2018), Growth performance and robustness of African Catfish Clarias gariepinus (Burchell) in biofloc‐based nursery production with different stocking densities,Aquaculture Research
- [21] Y. Avnimelech; P. De-Schryver; M. Emmereciano; D. Kuhn; A. Ray; N. Taw (2016), Biofloc technology - A practical guidebook,Technion Israel Institute of Technology
- [22] P. De Schryver; R. Crab; T. Defoirdt; N. Boon; W. Verstraete (2008), The basics of bio-flocs technology: the added value for aquaculture,Aquaculture
- [23] G. Santos; J. Schrama; R. Mamauag; J. Rombout; J. Verreth (2010), Chronic stress impairs performance, energy metabolism and welfare indicators in European seabass (Dicentrarchus labrax): the combined effects of fish crowding and water quality deterioration,Aquaculture
- [24] W. Lin; L. Li; J. Chen; D. Li; J. Hou; H. Guo et al. (2018), Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella),Fish & Shellfish Immunology
- [25] M. Naderi; S. Keyvanshokooh; A. Ghaedi; A. P. Salati (2018), Effect of acute crowding stress on rainbow trout (Oncorhynchus mykiss): a proteomics study,Aquaculture
- [26] M. Suárez; C. Trenzado; M. García-Gallego; M. Furné; S. García-Mesa; A. Domezain et al. (2015), Interaction of dietary energy levels and culture density on growth performance and metabolic and oxidative status of rainbow trout (Oncorhynchus mykiss),Aquacultural Engineering
- [27] J. Xie; B. Liu; Q. Zhou; Y. Su; Y. He; L. Pan et al. (2008), Effects of anthraquinone extract from rhubarb Rheum officinale Bail on the crowding stress response and growth of common carp Cyprinus carpio var. Jian,Aquaculture
- [28] Z. Yin; T. Lam; Y. Sin (1995), The effects of crowding stress on the non-specific immune response in fancy carp (Cyprinus carpio L.),Fish & Shellfish Immunology
- [29] R. Crab; T. Defoirdt; P. Bossier; W. Verstraete (2012), Biofloc technology in aquaculture: beneficial effects and future challenges,Aquaculture
- [30] M. E. Azim; D. C. Little (2008), The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus),Aquaculture
- [31] D. Montero; M. Izquierdo; L. Tort; L. Robaina; J. Vergara (1999), High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles,Fish Physiology and Biochemistry
- [32] T. Andrade; A. Afonso; A. Pérez-Jiménez; A. Oliva-Teles; V. de las Heras; J. M. Mancera et al. (2015), Evaluation of different stocking densities in a Senegalese sole (Solea senegalensis) farm: implications for growth, humoral immune parameters and oxidative status,Aquaculture
- [33] H. Adineh; M. Naderi; M. K. Hamidi; M. Harsij (2019), Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density,Fish & Shellfish Immunology
- [34] (2021), FAO Yearbook. Fishery and Aquaculture Statistics 2019,FAO