Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,032,913
  • Công bố khoa học và công nghệ Việt Nam

Vật liệu composite

Cao Lưu Ngọc Hạnh, Lương Huỳnh Vủ Thanh(1), Đặng Huỳnh Giao, Phạm Mai Hương, Lý Thị Huyền Trang, Hà Tấn Tâm

Tổng hợp vật liệu Fe3O4/lignin ứng dụng xử lý methylene blue

Synthesis of Fe3O4/lignin for methylene blue treatment application

Khoa học (ĐH Cần Thơ)

2022

1

1-16

1859-2333

Nghiên cứu này được thực hiện nhằm tổng hợp vật liệu Fe3O4/lignin và đánh giá khả năng xử lý methylene blue của vật liệu. Trong đó, Fe3O4 được tổng hợp bằng phương pháp đồng kết tủa, lignin được trích ly từ bã mía và vật liệu Fe3O4/lignin được kết hợp thông qua tác nhân liên kết citric acid. Các vật liệu sau khi tổng hợp được đánh giá bởi các phương pháp phân tích hiện đại như kỹ thuật nhiễu xạ tia X để xác định đặc điểm cấu trúc của các hạt Fe3O4; kỹ thuật quang phổ hồng ngoại biến đổi Fourier để xác định sự có mặt của các liên kết trong phân tử vật liệu hấp phụ; kính hiển vi quang học để xác định hình thái bề mặt của Fe3O4/lignin. Độ bão hòa từ của các hạt Fe3O4 và Fe3O4/lignin được xác định bằng từ kế mẫu rung lần lượt là 95 và 49,5 emu.g-1. Khả năng hấp phụ và nhả hấp phụ methylene blue của Fe3O4/lignin được đánh giá bằng phương pháp UV-Vis. Kết quả cho thấy hiệu suất hấp phụ tối đa của Fe3O4/lignin đối với metylen blue có thể đạt 96,53% ở pH 6-7 trong 60 phút và hiệu suất nhả hấp phụ là 66,5% trong 75 phút. Việc xử lý metylene blue tuân theo mô hình động học giả kiến bậc hai và mô hình hấp phụ đẳng nhiệt Langmuir.

This study is aimed to synthesize Fe3O4/lignin materials and evaluate the material's ability to handle methylene blue. In which, Fe3O4 was synthesized by co-precipitation method, lignin was extracted from sugarcane bagasse, and Fe3O4/lignin materials were combined through citric acid binding agent. The as-synthesized materials were evaluated by advanced analytical methods such as X-ray diffraction techniques to determine the structural characteristics of Fe3O4 particles; Fourier transform infrared spectroscopy techniques to determine the presence of molecular bonding in the adsorbent; optical microscopy to determine the surface morphology of Fe3O4/lignin. The saturation magnetization of Fe3O4 particles and Fe3O4/lignin materials determined by vibrating sample magnetometer is 95 and 49.5 emu.g-1 , respectively. Fe3O4/lignin adsorption and desorption capacity of methylene blue was evaluated by UV-Vis method. As a result, the maximum adsorption efficiency of Fe3O4/lignin for methylene blue could reach 96.53% at pH 6-7 within 60 minutes and the desorption efficiency was 66.5% at 75 minutes. The treatment of methylene blue was fitted to pseudo-second order model and Langmuir isotherm adsorption model.

TTKHCNQG, CVv 403

  • [1] Zhang, Q., Li, M., Chenyan, G., Jia, Z., Wan, G., Wang, S., & Min, D. (2019), Fe3O4 nanoparticles loaded on Lignin nanoparticles applied as a peroxidase mimic for the sensitively colorimetric detection of H2O2,Nanomaterials, 9(2), 210. https://doi.org/10.3390/nano9020210
  • [2] Zhang, C., Dai, Y., Wu, Y., Lu, G., Cao, Z., Cheng, J., Wang, K., Yang, H., Xia, Y., Wen, X., Ma, W., Liu, C., & Wang, Z. (2020), Facile preparation of polyacrylamide/chitosan/ Fe3O4 composite hydrogels for effective removal of methylene blue f-rom aqueous solution,Carbohydrate Polymers, 234, 115882. https://doi.org/10.1016/j.carbpol.2020.115882
  • [3] Yuan, C., Lou, Z., Wang, W., Yang, L., & Li, Y. (2019), Synthesis of Fe3C@C f-rom Pyrolysis of Fe3O4-Lignin clusters and its application for quick and sensitive detection of PrPSc through a sandwich SPR detection assay,International Journal of Molecular Sciences, 20(3), 741. https://doi.org/10.3390/ijms20030741
  • [4] Yao, Y., Xu, F., Chen, M., Xu, Z., & Zhu, Z. (2010), Adsorption behavior of methylene blue on carbon nanotubes,Bioresource Technology, 101(9), 3040-3046. https://doi.org/10.1016/j.biortech.2009.12.042
  • [5] Wang, Z., Gao, M., Li, X., Ning, J., Zhou, Z., & Li, G. (2020), Efficient adsorption of methylene blue f-rom aqueous solution by graphene oxide modified persimmon tannins,Materials Science and Engineering C, 108, 110196. https://doi.org/10.1016/j.msec.2019.110196
  • [6] Wang, S., Tang, J., Zhao, H., Wan, J., & Chen, K. (2014), Synthesis of magnetite–silica core–shell nanoparticles via direct silicon oxidation,Journal of Colloid and Interface Science, 432, 43-46. https://doi.org/10.1016/j.jcis.2014.06.062
  • [7] Vidovix, T. B., Quesada, H. B., Januário, E. F., Diogo, R. B., & Vieira, A. M. S. (2019), Green synthesis of copper oxide nanoparticles using Punica granatum leaf extract applied to the removal of methylene blue,Materials Letters, 257, 126685. https://doi.org/10.1016/j.matlet.2019.126685
  • [8] Verma, A. K., Dash, R. R., & Bhunia, P. (2012), A review on chemical coagulation/flocculation technologies for removal of colour f-rom textile wastewaters,Journal of Environmental Management, 93(1), 154-168. https://doi.org/10.1016/j.jenvman.2011.09.012
  • [9] Shi, Y., Mingshuai, Z., Linxuan, L., Yunkai, L., Na, Z., Shisuo, F., & Jun, T. (2018), Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue f-rom aqueous solution,Environ Chem, 37, 96-107
  • [10] Shao, D. X., Hu, A., Wang, J., & Yu, C. W. (2008), Monodispersed magnetite/silica composite microspheres: preparation and application for plasmid DNA purification,Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1), 61-65. https://doi.org/10.1016/j.colsurfa.2008.02.023
  • [11] Saini, J., Garg, V. K., & Gupta, R. K. (2018), Removal of methylene blue f-rom aqueous solution by Fe3O4@Ag/SiO2 nanospheres: synthesis, c-haracterization and adsorption performance,Journal of Molecular Liquids, 250, 413-422. https://doi.org/10.1016/j.molliq.2017.11.180
  • [12] Rezakazemi, M., Ahmad, B. A., Gavin, M. W., & Shirazian, S. (2018), Quantum chemical calculations and molecular modeling for methylene blue removal f-rom water by a ligninchitosan blend,International journal of biological macromolecules, 120, 2065-2075. https://doi.org/10.1016/j.ijbiomac.2018.09.027
  • [13] Rehman, R., Anwar, J., Mahmud, T., Salman, M., Shafique, U., Zaman, W.U. (2011), Removal of Murexide (Dye) f-rom Aqueous Media using Rice Husk as an Adsorbent,Journal-Chemical Society of Pakistan, 33(4), 598-603
  • [14] Ramesh, A. V., Devi, D. R., Botsa, S. M., & Basavaia, K. (2018), Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue,Journal of Asian Ceramic Societies, 6(2), 145-155. https://doi.org/10.1080/21870764.2018.1459335
  • [15] Pirbazari, A. E., Saberikhah, E., & Kozani, S. S. H. (2014), Fe3O4–wheat straw: preparation, c-haracterization and its application for methylene blue adsorption,Water Resources and Industry, 7, 23-37. https://doi.org/10.1016/j.wri.2014.09.001
  • [16] Park, J., An, K., Hwang. Y., Park, J. -G., Noh, H. - J., Kim, J. - Y., Park, J. - H., Hwang, N.- M., & Hyeon, T. (2004), Ultra-large-scale syntheses of monodisperse nanocrystals,Nature Materials, 3, 891–895. https://doi.org/10.1038/nmat1251
  • [17] Padilha, C. E. A., Nogueira, C. C., Souza, D. F. S., Oliveira, J. A., & Santos, E. S. D. (2020), Organosolv lignin/Fe3O4 nanoparticles applied as a β-glucosidase immobilization support and adsorbent for textile dye removal,Industrial Crops and Products, 146, 112167. https://doi.org/10.1016/j.indcrop.2020.112167
  • [18] Mahmoodi-Babolan, N., Heydari, A., & Nematollahzade, A. (2019), Removal of methylene blue via bioinspired catecholamine/starch superadsorbent and the efficiency prediction by response surface methodology and artificial neural networkparticle swarm optimization,Bioresource technology, 294, 122084. https://doi.org/10.1016/j.biortech.2019.122084
  • [19] Thanh, L. H. V., Anh, T. T. P., Kiệt, N. T., & Đức, Đ. (2021), Tổng hợp vật liệu nano Fe3O4@SiO2 cấu trúc lõi vỏ có độ từ hóa cao,Tạp chí Khoa học Trường Đại học Cần Thơ, 57(3A), 53-64. https://doi.org/10.22144/ctu.jvn.2021.085
  • [20] Lutterotti, L., Pilliere, H., Fontugne, C., Boullay, P., & Chateigner, D. (2019), Full-profile search– match by the Rietveld method,Journal of Applied Crystallography, 52(3), 587-598. https://doi.org/10.1107/S160057671900342X
  • [21] Liu, G., Li, L., Dai, Z., Qi, Q., Wu, J., Ma, L.Q., Tang, C., Xua, J. (2020), Organic adsorbents modified with citric acid and Fe3O4 enhance the removal of Cd and Pb in contaminated solutions,Chemical Engineering Journal, 395, 125108- 125118. https://doi.org/10.1016/j.cej.2020.125108
  • [22] Li, X., He, Y., Sui, H., & He, L. (2018), One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes,Nanomaterials, 8(3), 162. https://doi.org/10.3390/nano8030162
  • [23] Kunde, G. B., Sehgal, B., & Ganguli, A. K. (2019), Synthesis of mesoporous rebar MWCNT/alumina composite (RMAC) nodules for the effective removal of methylene blue and Cr (VI) f-rom an aqueous medium,Journal of Hazardous Materials, 374, 140-151. https://doi.org/10.1016/j.jhazmat.2019.03.099
  • [24] Kuang, Y., Zhang, X., & Zhou, S. (2020), Adsorption of methylene blue in water onto activated carbon by surfactant modification,Water, 12(2), 587. https://doi.org/10.3390/w12020587
  • [25] Kordouli, E., Bourikas, K., Lycourghiotis, A., & Kordulis, C. (2015), The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios,Catalysis Today, 252, 128-135. https://doi.org/10.1016/j.cattod.2014.09.010
  • [26] Kenawy, E. R., Ayman, A. G., Wabaidur, S. M., AliKhan, M., RazaSiddiqui, M., Zeid, A. A., Alqadami, A. A., & Hamid, M. (2018), Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes,Journal of Environmental Management, 219, 285-293. https://doi.org/10.1016/j.jenvman.2018.04.121
  • [27] Jin, Y., Zeng, C., Lü, Q. -F., & Yu, Y. (2019), Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin,International Journal of Biological Macromolecules, 123, 50-58. https://doi.org/10.1016/j.ijbiomac.2018.10.213
  • [28] Jędrzak, A., Rębiś, T., Nowicki, M., Synoradzki, K., Mrówczyński, R., & Jesionowski, T. (2018), Polydopamine grafted on an advanced Fe3O4/lignin hybrid material and its evaluation in biosensing,Applied Surface Science, 455, 455- 464. https://doi.org/10.1016/j.apsusc.2018.05.155
  • [29] Indra, D. M., Vimal, C. S., & Nitin, K. A. (2006), Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses,Dyes Pigment, 69, 210–223. https://doi.org/10.1016/j.dyepig.2005.03.013
  • [30] Huệ, H. K., & Nhi, T. C. Y. (2019), Trích ly lignin từ bã mía và ứng dụng hấp phụ kim loại nặng, chất màu hữu cơ,(Luận văn tốt nghiệp đại học). Trường Đại học Cần Thơ
  • [31] Hou, Y. H., Chen, X., Li, J., Chen, Z., & Gai, X. L. (2013), Isolation of PCR-ready genomic DNA f-rom Aspergillus niger cells with Fe3O4/SiO2 microspheres,Separation and Purification Technology,116, 101-106. https://doi.org/10.1016/j.seppur.2013.05.033
  • [32] Gholami, N., Koohi, A. D., & Pirbazari, A. E. (2018), Fabrication, c-haracterization, regeneration and application of nanomagnetic Fe3O4@fish scale as a bio-adsorbent for removal of methylene blue,Journal of Water and Environmental Nanotechnology, 3(3), 219-234
  • [33] Gao, S., Liu, X., Xu, T., Ma, X., Shen, Z., Wu, A., Zhu, Y., & Hosmane, N. S. (2013), Synthesis and c-haracterization of Fe10BO3/Fe3O4/SiO2 and GdFeO3/Fe3O4/SiO2: nanocomposites of biofunctional materials,Chemistry Open 2(3), 88-92. https://doi.org/10.1002/open.201300007
  • [34] Faraji, M., Yamini, Y., & Rezaee, M. (2010), Magnetic nanoparticles: synthesis, stabilization, functionalization, c-haracterization, and applications,Journal of the Iranian Chemical Society 7(1), 1-37. https://doi.org/10.1007/BF03245856
  • [35] Chi, Y., Yuan, Q., Li, Y., Tu, J., Zhao, L., Li, N., & Li, T. (2012), Synthesis of Fe3O4@SiO2 – Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol,Journal of colloid and interface science, 383(1), 96-102. https://doi.org/10.1016/j.jcis.2012.06.027
  • [36] Budnyak, T. M., Aminzadeh, S., Pylypchuk, I. V., Sternik, D., Tertykh, V. A., Lindström, M. E., & Sevastyanova, O. (2018), Methylene blue dye sorption by hybrid materials f-rom technical lignins,Journal of Environmental Chemical Engineering, 6(4), 4997-5007. https://doi.org/10.1016/j.jece.2018.07.041
  • [37] Asghar, A., Raman, A. A. A., & Daud, W. M. A. (2015), Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review,Journal of Cleaner Production, 87, 826- 838. https://doi.org/10.1016/j.jclepro.2014.09.010
  • [38] Alventosa-deLara, E., Barredo-Damas, S., AlcainaMiranda, M. I., & Iborra-Clar, M. I. (2012), Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance,Journal of Hazardous Materials, 209, 492-500. https://doi.org/10.1016/j.jhazmat.2012.01.065
  • [39] Alqadami, A. A., Naushad, M., Alothman, Z. A., & Ahamad, T. (2018), Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism,Journal of Environmental Management, 223, 29-36. https://doi.org/10.1016/j.jenvman.2018.05.090
  • [40] Alqadami, A. A., Naushad M., Abdalla, M. A., Ahamad, T., Alothman, Z. A., & Alshehri, S. M. (2016), Synthesis and c-haracterization of Fe3O4@TSC nanocomposite: highly efficient removal of toxic metal ions f-rom aqueous medium,RSC Advances, 6(27), 22679-22689. https://doi.org/10.1039/C5RA27525C
  • [41] Alizadeh, A., Fakhari, M., Safaei, Z., Khodeai, M. M., Repo, E., Asadi, A. (2020), Ionic liquiddecorated Fe3O4@SiO2 nanocomposite coated on talc sheets: An efficient adsorbent for methylene blue in aqueous solution,Inorganic Chemistry Communications, 121, 108204. https://doi.org/10.1016/j.inoche.2020.108204
  • [42] Aldawsari, A. M. (2021), Fe3O4@ABDA nanocomposite as a new adsorbent effective removal of methylene blue dye: isotherm, kinetic, and thermodynamic study,Separation Science and Technology, 56(3), 474-484. https://doi.org/10.1080/01496395.2020.1722169
  • [43] Abdullah, A. B., Muhammad, H. A. M., & Tawfik, A. S. (2019), Methylene blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study,Journal of Environmental Chemical Engineering, 7(3), 103107. https://doi.org/10.1016/j.jece.2019.103107