Lọc theo danh mục
liên kết website
Lượt truy cập
- Công bố khoa học và công nghệ Việt Nam
20512 - Vật liệu composite
Cao Lưu Ngọc Hạnh(2), Lương Huỳnh Vủ Thanh(1), Đặng Huỳnh Giao(3), Phạm Mai Hương, Lý Thị Huyền Trang, Hà Tấn Tâm
Tổng hợp vật liệu Fe3O4/lignin ứng dụng xử lý methylene blue
Synthesis of Fe3O4/lignin for methylene blue treatment application
Khoa học (ĐH Cần Thơ)
2022
1
1-16
1859-2333
TTKHCNQG, CVv 403
- [1] Zhang, Q., Li, M., Chenyan, G., Jia, Z., Wan, G., Wang, S., & Min, D. (2019), Fe3O4 nanoparticles loaded on Lignin nanoparticles applied as a peroxidase mimic for the sensitively colorimetric detection of H2O2,Nanomaterials, 9(2), 210. https://doi.org/10.3390/nano9020210
- [2] Zhang, C., Dai, Y., Wu, Y., Lu, G., Cao, Z., Cheng, J., Wang, K., Yang, H., Xia, Y., Wen, X., Ma, W., Liu, C., & Wang, Z. (2020), Facile preparation of polyacrylamide/chitosan/ Fe3O4 composite hydrogels for effective removal of methylene blue f-rom aqueous solution,Carbohydrate Polymers, 234, 115882. https://doi.org/10.1016/j.carbpol.2020.115882
- [3] Yuan, C., Lou, Z., Wang, W., Yang, L., & Li, Y. (2019), Synthesis of Fe3C@C f-rom Pyrolysis of Fe3O4-Lignin clusters and its application for quick and sensitive detection of PrPSc through a sandwich SPR detection assay,International Journal of Molecular Sciences, 20(3), 741. https://doi.org/10.3390/ijms20030741
- [4] Yao, Y., Xu, F., Chen, M., Xu, Z., & Zhu, Z. (2010), Adsorption behavior of methylene blue on carbon nanotubes,Bioresource Technology, 101(9), 3040-3046. https://doi.org/10.1016/j.biortech.2009.12.042
- [5] Wang, Z., Gao, M., Li, X., Ning, J., Zhou, Z., & Li, G. (2020), Efficient adsorption of methylene blue f-rom aqueous solution by graphene oxide modified persimmon tannins,Materials Science and Engineering C, 108, 110196. https://doi.org/10.1016/j.msec.2019.110196
- [6] Wang, S., Tang, J., Zhao, H., Wan, J., & Chen, K. (2014), Synthesis of magnetite–silica core–shell nanoparticles via direct silicon oxidation,Journal of Colloid and Interface Science, 432, 43-46. https://doi.org/10.1016/j.jcis.2014.06.062
- [7] Vidovix, T. B., Quesada, H. B., Januário, E. F., Diogo, R. B., & Vieira, A. M. S. (2019), Green synthesis of copper oxide nanoparticles using Punica granatum leaf extract applied to the removal of methylene blue,Materials Letters, 257, 126685. https://doi.org/10.1016/j.matlet.2019.126685
- [8] Verma, A. K., Dash, R. R., & Bhunia, P. (2012), A review on chemical coagulation/flocculation technologies for removal of colour f-rom textile wastewaters,Journal of Environmental Management, 93(1), 154-168. https://doi.org/10.1016/j.jenvman.2011.09.012
- [9] Shi, Y., Mingshuai, Z., Linxuan, L., Yunkai, L., Na, Z., Shisuo, F., & Jun, T. (2018), Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue f-rom aqueous solution,Environ Chem, 37, 96-107
- [10] Shao, D. X., Hu, A., Wang, J., & Yu, C. W. (2008), Monodispersed magnetite/silica composite microspheres: preparation and application for plasmid DNA purification,Colloids and Surfaces A: Physicochemical and Engineering Aspects, 322(1), 61-65. https://doi.org/10.1016/j.colsurfa.2008.02.023
- [11] Saini, J., Garg, V. K., & Gupta, R. K. (2018), Removal of methylene blue f-rom aqueous solution by Fe3O4@Ag/SiO2 nanospheres: synthesis, c-haracterization and adsorption performance,Journal of Molecular Liquids, 250, 413-422. https://doi.org/10.1016/j.molliq.2017.11.180
- [12] Rezakazemi, M., Ahmad, B. A., Gavin, M. W., & Shirazian, S. (2018), Quantum chemical calculations and molecular modeling for methylene blue removal f-rom water by a ligninchitosan blend,International journal of biological macromolecules, 120, 2065-2075. https://doi.org/10.1016/j.ijbiomac.2018.09.027
- [13] Rehman, R., Anwar, J., Mahmud, T., Salman, M., Shafique, U., Zaman, W.U. (2011), Removal of Murexide (Dye) f-rom Aqueous Media using Rice Husk as an Adsorbent,Journal-Chemical Society of Pakistan, 33(4), 598-603
- [14] Ramesh, A. V., Devi, D. R., Botsa, S. M., & Basavaia, K. (2018), Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue,Journal of Asian Ceramic Societies, 6(2), 145-155. https://doi.org/10.1080/21870764.2018.1459335
- [15] Pirbazari, A. E., Saberikhah, E., & Kozani, S. S. H. (2014), Fe3O4–wheat straw: preparation, c-haracterization and its application for methylene blue adsorption,Water Resources and Industry, 7, 23-37. https://doi.org/10.1016/j.wri.2014.09.001
- [16] Park, J., An, K., Hwang. Y., Park, J. -G., Noh, H. - J., Kim, J. - Y., Park, J. - H., Hwang, N.- M., & Hyeon, T. (2004), Ultra-large-scale syntheses of monodisperse nanocrystals,Nature Materials, 3, 891–895. https://doi.org/10.1038/nmat1251
- [17] Padilha, C. E. A., Nogueira, C. C., Souza, D. F. S., Oliveira, J. A., & Santos, E. S. D. (2020), Organosolv lignin/Fe3O4 nanoparticles applied as a β-glucosidase immobilization support and adsorbent for textile dye removal,Industrial Crops and Products, 146, 112167. https://doi.org/10.1016/j.indcrop.2020.112167
- [18] Mahmoodi-Babolan, N., Heydari, A., & Nematollahzade, A. (2019), Removal of methylene blue via bioinspired catecholamine/starch superadsorbent and the efficiency prediction by response surface methodology and artificial neural networkparticle swarm optimization,Bioresource technology, 294, 122084. https://doi.org/10.1016/j.biortech.2019.122084
- [19] Thanh, L. H. V., Anh, T. T. P., Kiệt, N. T., & Đức, Đ. (2021), Tổng hợp vật liệu nano Fe3O4@SiO2 cấu trúc lõi vỏ có độ từ hóa cao,Tạp chí Khoa học Trường Đại học Cần Thơ, 57(3A), 53-64. https://doi.org/10.22144/ctu.jvn.2021.085
- [20] Lutterotti, L., Pilliere, H., Fontugne, C., Boullay, P., & Chateigner, D. (2019), Full-profile search– match by the Rietveld method,Journal of Applied Crystallography, 52(3), 587-598. https://doi.org/10.1107/S160057671900342X
- [21] Liu, G., Li, L., Dai, Z., Qi, Q., Wu, J., Ma, L.Q., Tang, C., Xua, J. (2020), Organic adsorbents modified with citric acid and Fe3O4 enhance the removal of Cd and Pb in contaminated solutions,Chemical Engineering Journal, 395, 125108- 125118. https://doi.org/10.1016/j.cej.2020.125108
- [22] Li, X., He, Y., Sui, H., & He, L. (2018), One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes,Nanomaterials, 8(3), 162. https://doi.org/10.3390/nano8030162
- [23] Kunde, G. B., Sehgal, B., & Ganguli, A. K. (2019), Synthesis of mesoporous rebar MWCNT/alumina composite (RMAC) nodules for the effective removal of methylene blue and Cr (VI) f-rom an aqueous medium,Journal of Hazardous Materials, 374, 140-151. https://doi.org/10.1016/j.jhazmat.2019.03.099
- [24] Kuang, Y., Zhang, X., & Zhou, S. (2020), Adsorption of methylene blue in water onto activated carbon by surfactant modification,Water, 12(2), 587. https://doi.org/10.3390/w12020587
- [25] Kordouli, E., Bourikas, K., Lycourghiotis, A., & Kordulis, C. (2015), The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios,Catalysis Today, 252, 128-135. https://doi.org/10.1016/j.cattod.2014.09.010
- [26] Kenawy, E. R., Ayman, A. G., Wabaidur, S. M., AliKhan, M., RazaSiddiqui, M., Zeid, A. A., Alqadami, A. A., & Hamid, M. (2018), Cetyltrimethylammonium bromide intercalated and branched polyhydroxystyrene functionalized montmorillonite clay to sequester cationic dyes,Journal of Environmental Management, 219, 285-293. https://doi.org/10.1016/j.jenvman.2018.04.121
- [27] Jin, Y., Zeng, C., Lü, Q. -F., & Yu, Y. (2019), Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin,International Journal of Biological Macromolecules, 123, 50-58. https://doi.org/10.1016/j.ijbiomac.2018.10.213
- [28] Jędrzak, A., Rębiś, T., Nowicki, M., Synoradzki, K., Mrówczyński, R., & Jesionowski, T. (2018), Polydopamine grafted on an advanced Fe3O4/lignin hybrid material and its evaluation in biosensing,Applied Surface Science, 455, 455- 464. https://doi.org/10.1016/j.apsusc.2018.05.155
- [29] Indra, D. M., Vimal, C. S., & Nitin, K. A. (2006), Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash—kinetic study and equilibrium isotherm analyses,Dyes Pigment, 69, 210–223. https://doi.org/10.1016/j.dyepig.2005.03.013
- [30] Huệ, H. K., & Nhi, T. C. Y. (2019), Trích ly lignin từ bã mía và ứng dụng hấp phụ kim loại nặng, chất màu hữu cơ,(Luận văn tốt nghiệp đại học). Trường Đại học Cần Thơ
- [31] Hou, Y. H., Chen, X., Li, J., Chen, Z., & Gai, X. L. (2013), Isolation of PCR-ready genomic DNA f-rom Aspergillus niger cells with Fe3O4/SiO2 microspheres,Separation and Purification Technology,116, 101-106. https://doi.org/10.1016/j.seppur.2013.05.033
- [32] Gholami, N., Koohi, A. D., & Pirbazari, A. E. (2018), Fabrication, c-haracterization, regeneration and application of nanomagnetic Fe3O4@fish scale as a bio-adsorbent for removal of methylene blue,Journal of Water and Environmental Nanotechnology, 3(3), 219-234
- [33] Gao, S., Liu, X., Xu, T., Ma, X., Shen, Z., Wu, A., Zhu, Y., & Hosmane, N. S. (2013), Synthesis and c-haracterization of Fe10BO3/Fe3O4/SiO2 and GdFeO3/Fe3O4/SiO2: nanocomposites of biofunctional materials,Chemistry Open 2(3), 88-92. https://doi.org/10.1002/open.201300007
- [34] Faraji, M., Yamini, Y., & Rezaee, M. (2010), Magnetic nanoparticles: synthesis, stabilization, functionalization, c-haracterization, and applications,Journal of the Iranian Chemical Society 7(1), 1-37. https://doi.org/10.1007/BF03245856
- [35] Chi, Y., Yuan, Q., Li, Y., Tu, J., Zhao, L., Li, N., & Li, T. (2012), Synthesis of Fe3O4@SiO2 – Ag magnetic nanocomposite based on small-sized and highly dispersed silver nanoparticles for catalytic reduction of 4-nitrophenol,Journal of colloid and interface science, 383(1), 96-102. https://doi.org/10.1016/j.jcis.2012.06.027
- [36] Budnyak, T. M., Aminzadeh, S., Pylypchuk, I. V., Sternik, D., Tertykh, V. A., Lindström, M. E., & Sevastyanova, O. (2018), Methylene blue dye sorption by hybrid materials f-rom technical lignins,Journal of Environmental Chemical Engineering, 6(4), 4997-5007. https://doi.org/10.1016/j.jece.2018.07.041
- [37] Asghar, A., Raman, A. A. A., & Daud, W. M. A. (2015), Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review,Journal of Cleaner Production, 87, 826- 838. https://doi.org/10.1016/j.jclepro.2014.09.010
- [38] Alventosa-deLara, E., Barredo-Damas, S., AlcainaMiranda, M. I., & Iborra-Clar, M. I. (2012), Ultrafiltration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance,Journal of Hazardous Materials, 209, 492-500. https://doi.org/10.1016/j.jhazmat.2012.01.065
- [39] Alqadami, A. A., Naushad, M., Alothman, Z. A., & Ahamad, T. (2018), Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism,Journal of Environmental Management, 223, 29-36. https://doi.org/10.1016/j.jenvman.2018.05.090
- [40] Alqadami, A. A., Naushad M., Abdalla, M. A., Ahamad, T., Alothman, Z. A., & Alshehri, S. M. (2016), Synthesis and c-haracterization of Fe3O4@TSC nanocomposite: highly efficient removal of toxic metal ions f-rom aqueous medium,RSC Advances, 6(27), 22679-22689. https://doi.org/10.1039/C5RA27525C
- [41] Alizadeh, A., Fakhari, M., Safaei, Z., Khodeai, M. M., Repo, E., Asadi, A. (2020), Ionic liquiddecorated Fe3O4@SiO2 nanocomposite coated on talc sheets: An efficient adsorbent for methylene blue in aqueous solution,Inorganic Chemistry Communications, 121, 108204. https://doi.org/10.1016/j.inoche.2020.108204
- [42] Aldawsari, A. M. (2021), Fe3O4@ABDA nanocomposite as a new adsorbent effective removal of methylene blue dye: isotherm, kinetic, and thermodynamic study,Separation Science and Technology, 56(3), 474-484. https://doi.org/10.1080/01496395.2020.1722169
- [43] Abdullah, A. B., Muhammad, H. A. M., & Tawfik, A. S. (2019), Methylene blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study,Journal of Environmental Chemical Engineering, 7(3), 103107. https://doi.org/10.1016/j.jece.2019.103107
