Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  21,903,112
  • Công bố khoa học và công nghệ Việt Nam

Công nghệ gen; nhân dòng vật nuôi;

Phạm Hoàng Phương Vân, Lê Đặng Minh Trang, Nguyễn Nguyên Chương, Nguyễn Phương Thảo(1), Hoàng Thị Lan Xuân

Cây chuyển gen đậu tương GmNAC085 tăng cường biểu hiện của một số gen quan trọng dưới điều kiện stress mặn

Tạp chí Công nghệ Sinh học - Viện Khoa học và Công nghệ Việt Nam

2020

2

283-291

1811-4989

Biến đổi khí hậu đã khiến các stress phi sinh học như hạn hay mặn trở thành các mối đe dọa lớn hơn đối với hệ sinh thái và an ninh lương thực thế giới. Để đáp ứng và bảo vệ trước những điều kiện bất lợi, thực vật thay đổi các hoạt động sinh lý, sinh hóa và phân tử. Đặc biệt, các thành viên NAC (NAM, ATAF1/2, CUC2) đã được biết đến là nhân tố quan trọng trong điều hòa nhiều quá trình sinh học của cây trong đáp ứng các stress thẩm thấu gây ra từ hạn và mặn. Theo các nghiên cứu trước đây, GmNAC085, một nhân tố điều hòa phiên mã của đậu tương (Glycine max) có vai trò điều hòa dương tính đối với stress hạn. Vì vậy, ở nghiên cứu này, chúng tôi mở rộng tìm hiểu vai trò của GmNAC085 trong đáp ứng stress mặn. Theo kết quả phân tích RT-qPCR, một số gen quan trọng liên quan đến đáp ứng stress được tăng cường biểu hiện cao hơn đáng kể ở cây đậu tương chuyển gen so với cây không chuyển gen, bao gồm các gen mã hóa các enzyme chống ôxi hóa (GmSOD, GmAPX and GmCAT), gen mã hóa kênh vận chuyển natri-hydrogen ion (GmNHX1) và gen mã hóa enzyme tổng hợp proline (GmP5CS). Ngoài ra, các kết quả sinh hóa cũng cho thấy hoạt động của các enzyme chống ôxi hóa peroxidase và catalase tăng mạnh ở cây chuyển gen, cùng với nồng độ hydrogen peroxide nội bào thấp hơn. Tất cả những kết quả này cho thấy cây chuyển gen có thể có những thuận lợi trong việc đối phó stress ôxi hóa thông qua hoạt động enzyme và sử dụng nồng độ proline, cũng như thông qua hoạt động bài tiết Na+ nội bào ở điều kiện stress mặn. Vì vậy, cơ chế hoạt động đầy đủ của GmNAC085 liên quan đến stress mặn cần được thực hiện nhằm đánh giá tiềm năng sử dụng gen này trong công tác cải thiện chất lượng giống cây trồng.

TTKHCNQG, CVv 262

  • [1] Zhu JK (2016), Abiotic stress signaling and responses in plants.,Cell 167(2): 313–324.
  • [2] Wu D, Sun Y, Wang H, Shi H, Su M, Shan H, Li T, Li Q (2018), The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana.,Gene 662: 10–20.
  • [3] Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo, JH (2012), Induction of drought tolerance in cucumber plants by a consortium of three plant growth–promoting Rhizobacterium strains.,PLoS One 7: e52565.
  • [4] Tran LSP, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010), Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach.,GM Crops 1(1): 32–39.
  • [5] Thao N, Thu N, Hoang X, Ha C, Tran LS (2013), Differential expression analysis of a subset of drought-responsive GmNAC genes in two soybean cultivars differing in drought tolerance.,Inter J Mol Sci 14(12): 23828–23841.
  • [6] Stolf-Moreira R, Medri ME, Neumaier N, Lemos NG, Pimenta JA, Tobita S, Brogin RL, MarcelinoGuimarães FC, Oliveira MCN, Farias JRB, Abdelnoor RV, Nepomuceno AL (2010), Soybean physiology and gene expression during drought.,Genet Mol Res 9: 1946–1956.
  • [7] Shinozaki K, Yamaguchi-Shinozaki K (2007), Gene networks involved in drought stress response and tolerance.,J Exper Bot 58(2): 221–227.
  • [8] Shi HZ, Ishitani M, Kim CS, Zhu JK (2000), The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+ /H+ antiporter.,Proc Natl Acad Sci USA 97:6896– 6901.
  • [9] Shao H, Wang H, Tang X (2015), NAC transcription factors in plant multiple abiotic stress responses: progress and prospects.,Front Plant Sci 6: 902.
  • [10] Shannon LM, Kay E, Lew JY (1966), Peroxidase isozymes f-rom horseradish roots. I. Isolation and physical properties.,J Biol Chem 241: 2166–2172.
  • [11] Shabala S (2013), Learning f-rom halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops.,Ann Bot 112(7): 1209–1221.
  • [12] Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP (2008), Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae.,Plant Physiol 147(1): 280–295.
  • [13] Rodríguez Y, Pérez E, Solórzano E, Meneses AR, Fernández (2001), Peroxidase and polyphenoloxidase activities in tomato roots inoculated with Glomus clarum or Glomus fasciculatum.,Cul Tropic 22: 11–16
  • [14] Pinheiro GL, Marques, CS, Costa MD, Reis PA, Alves MS, Carvalho CM, Fietto LG, Fontes EP (2009), Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response.,Gene, 444(1-2): 10–23.
  • [15] Patterson BD, MacRae EA, Ferguson IB (1984), Estimation of hydrogen peroxide in plant extracts using titanium (IV).,Anal Biochem 139: 487–492.
  • [16] Nxele X, Klein A, Ndimba BK (2017), Drought and salinity stress al-ters ROS accumulation, water retention, and osmolyte content in sorghum plants.,South Afr J Bot 108: 261–266.
  • [17] Nuruzzaman M, Sharoni AM, Kikuchi S (2013), Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants.,Front Microbiol 4: 428
  • [18] Nguyen NC, Hoang XLT, Nguyen QT, Binh NX, Watanabe Y, Thao NP, Tran L-SP (2019), Ectopic expression of Glycine max GmNAC109 enhances drought tolerance and ABA sensitivity in Arabidopsis.,Biomolecules 9: 714.
  • [19] Nguyen KH, Mostofa MG, Li W, Van HC, Watanabe Y, Le DT, Thao NP, Tran LSP (2018), The soybean transcription factor GmNAC085 enhances drought tolerance in Arabidopsis.,Environ Exp Bot 151: 12– 20.
  • [20] Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014), The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.,Front Plant Sci 5: 170.
  • [21] Morishita T, Kojima Y, Maruta T, Nishizawa-Yokoi A, Yabuta Y, Shigeoka S (2009), Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light.,Plant Cell Physiol 50(12): 2210–2222
  • [22] Ming LI, Zheng HU, Jiang QY, Sun XJ, Yuan GUO, Qi JC, Zhang H (2018), GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean.,J Integrat Agricult 17(3): 530–538.
  • [23] Li Y, Chen Q, Nan H, Li X, Lu S, Zhao X, Liu B, Guo C, Kong F, Cao D (2017), Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean.,PLoS One, 12: e0179554.
  • [24] Le DT, Nishiyama RIE, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2011), Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress.,DNA Res 18(4): 263–276.
  • [25] Jiao C, Yang R, Zhou Y, Gu Z (2016), Nitric oxide mediates isoflavone accumulation and the antioxidant system enhancement in soybean sprouts.,Food Chem 204: 373–380.
  • [26] Hussain S, Peng S, Fahad S, Khaliq A, Huang J, Cui K, Nie L (2015), Rice management interventions to mitigate greenhouse gas emissions: a review.,Environ Sci Pollut Res 22(5): 3342–3360.
  • [27] Hu H, Xiong L (2014), Genetic engineering and breeding of drought-resistant crops.,Ann Rev Plant Biol 65: 715–741.
  • [28] Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006), Overexpressing a NAM, ATAF, CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice.,Proc Natl Acad Sci 103: 12987–12992.
  • [29] Hong Y, Zhang H, Huang L, Li D, Song F (2016), Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice.,Front Plant Sci 7: 4.
  • [30] Hoa TTK, Tuyet HN, Thao NP, Xuan HTL (2018), Drought stress-related functional c-haracterization of transcription factor GmNAC085 in soybean.,J Biotech 16: 1–8.
  • [31] Gupta B, Huang B (2014), Mechanisms of salinity tolerance in plants: physiological, biochemical, and molecular c-haracterization.,Int J Genomics 2014: 701596
  • [32] Cao H, Wang L, Nawaz MA, Niu M, Sun J, Xie J, Kong Q, Huang Y, Cheng F, Bie Z (2017), Ectopic expression of pumpkin NAC transcription factor CmNAC1 improves multiple abiotic stress tolerance in Arabidopsis.,Front Plant Sci 8: 2052.
  • [33] Bayoumi TY, Eid MH, Metwali EM (2008), Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes.,Afric J Biotechnol 7: 2341–2352.
  • [34] Apse MP, Sottosanto JB, Blumwald E (2003), Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are al-tered in a T-DNA in-sertional mutant of AtNHX1, the Arabidopsis vacuolar Na+ /H+ antiporter.,Plant J 36: 229–239.
  • [35] An X, Liao Y, Zhang J, Dai L, Zhang N, Wang B, Liu L, Peng D (2015), Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance.,Plant Growth Regul 76: 211–223
  • [36] Al-Abdallat AM, Ali-Sheikh-Omar MA, Alnemer LM (2015), Overexpression of two ATNAC3-related genes improves drought and salt tolerance in tomato (Solanum lycopersicum L.).,Plant Cell Tiss Organ Cult 120: 989–1001.