



- Công bố khoa học và công nghệ Việt Nam
Toán học cơ bản
Lâm Quốc Anh(1), Trương Thị Mỹ Dung, Trần Ngọc Tâm
Sự tồn tại nghiệm và đặt chỉnh Zolezzi của bài toán cân bằng vector yếu và mạnh
Existence of solutions and Zolezzi wellposedness for weak and strong vector equilibrium problems
Khoa học (Đại học Cần Thơ)
2022
GDĐBSCL
56-63
1859-2333
TTKHCNQG, CVv 403
- [1] Zolezzi, T. (1995), Well-posedness criteria in optimization with application to the calculus of variations,Nonlinear Analysis. 25(5), 437-453. https://doi.org/10.1016/0362-546X(94)00142-5
- [2] Tykhonov, A. N. (1966), On the stability of the functional optimization problem,USSR Computational Mathematics and Mathematical Physics 6(4), 28-33. https://doi.org/10.22144/ctu.jvn.2021.145
- [3] Tâm, T. N., Anh, H. N. H., Anh, T. T. K., Nhật, D.M., & Thy, N. N. M. (2021), Sự tồn tại và tính nửa liên tục trên của nghiệm bài toán cân bằng vector theo nón thứ tự có phần trong đại số khác rỗng,Tạp chí khoa học trường Đại học Cần Thơ. 57(5A), 86-93. https://doi.org/10.22144/ctu.jvn.2021.145
- [4] Tam, T. N. (2022), On Hölder continuity of solution maps to parametric vector Ky Fan inequalities,TOP. 30(1), 77-94. https://doi.org/10.1007/s10957-007-9202-4
- [5] Oettli, W. (1997), A remark on vector-valued equilibria and generalized monotonicity,Acta Mathematica Vietnamica, 22(1), 213-221. http://journals.math.ac.vn/acta/pdf/9701213.pdf
- [6] Jahn, J. (2009), Vector Optimization,Berlin: Springer, 392 pages
- [7] Huang, N. J., Li, J., & Yao, J. C. (2007), Gap functions and existence of solutions to a system of vector equilibrium problems,Journal of Optimization Theory and Applications. 133(2), 201-212. https://doi.org/10.1007/s10957-007-9202-4
- [8] Hu, S., & Papageorgiou, N. (1997), Handbook of Multivalued Analysis,Volume I: Theory. Kluwer. Boston, 968 pages. https://doi.org/10.1007/s10898-006-9012-5
- [9] Hadamard, J. (1902), Sur le problèmes aux dérivees partielles et leur signification physique,Princeton University Bulletin, 49-52
- [10] Gong, X. H. (2006), Strong vector equilibrium problems,Journal of Global Optimization. 36(3), 339-349. https://doi.org/10.1007/s10898-006-9012-5
- [11] Giannessi, F. (Ed.). (2013), Vector variational inequalities and vector equilibria: mathematical theories (Vol. 38),Springer Science & Business Media
- [12] Fan, K. (1961), A generalization of Tychonoff's fixed point theorem,Mathematische Annalen. 142(3), 305-310. https://doi.org/10.1007/BF01353421
- [13] Chen, G. Y., Huang, X. X., & Yang, X. Q. (2005), Vector Optimization: Set-Valued and Variational Analysis,Springer. Berlin, 318 pages
- [14] Bianchi, M., Hadjisavvas, N., & Schaible, S. (1997), Vector equilibrium problems with generalized monotone bifunctions,Journal of optimization Theory and Applications, 92(3), 527-542. https://doi.org/10.1023/A:1022603406244
- [15] Bigi, G., Adela, C., & Kassay, G. (2012), Existence results for strong vector equilibrium problems and their applications,Optimization. 61(5), 567-583. https://doi.org/10.1023/A:1026495115191
- [16] Aubin, J. P., & Frankowska, H. (1990), Set-Valued Analysis,Birkhäuser. Boston, 474 pages
- [17] Ansari, Q. H. (2008), Existence of solutions of systems of generalized implicit vector quasiequilibrium problems,Journal of Mathematical Analysis and Applications. 341(2), 1271-1283. https://doi.org/10.1023/A:1026495115191
- [18] Ansari, Q. H., Konnov, I. V., & Yao, J. C. (2001), Existence of a solution and variational principles for vector equilibrium problems,Journal of Optimization Theory and Applications. 110(3), 481-492. https://doi.org/10.1023/A:1026495115191
- [19] Ansari, Q. H., Schaible, S., & Yao, J. C. (2000), System of vector equilibrium problems and its applications,Journal of Optimization Theory and Applications, 107(3), 547-557. https://doi.org/10.1023/A:1026495115191
- [20] Anh, L. Q., Khanh, P. Q., & Tam, T. N. (2019), Continuity of approximate solution maps of primal and dual vector equilibrium problems,Optimization Letters. 13(1), 201-211. https://doi.org/10.1007/s11590-018-1264-8
- [21] Anh, L. Q., Duoc, P. T., Tam, T. N., & Thang, N. C. (2021), Stability analysis for set-valued equilibrium problems with applications to Browder variational inclusions,Optimization Letters. 15(2), 613-626. https://doi.org/10.1080/02331934.2019.1646744
- [22] Anh, L. Q., Duoc, P. T., & Tam, T. N. (2020), On the stability of approximate solutions to set-valued equilibrium problems,Optimization. 69(7-8), 1583-1599. https://doi.org/10.1080/02331934.2019.1646744
- [23] Anh, L. Q., Duoc, P. T., & Tam, T. N. (2018), On Hölder continuity of solution maps to parametric vector primal and dual equilibrium problems,Optimization. 67(8), 1169-1182. https://doi.org/10.1080/02331934.2018.1466298