Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  30,051,002
  • Công bố khoa học và công nghệ Việt Nam

27.17

Toán học và thống kê

Các mẫu vô hạn của đơn ánh mạng không luôn có các bội chung ít nhất

Infinite examples of cancellative monoids that do not always have least common multiple

Vietnam Journal of Mathematics

2014

3

305-326

2305-221X

The authors will study the presentations of fundamental groups of the complement of complexified real affine line arrangements that do not contain two parallel lines. By Yoshinaga's minimal presentation, the authors can give positive homogeneous presentations of the fundamental groups. the authors consider the associated monoids defined by the presentations. It turns out that, in some cases, left (resp. right) least common multiple does not always exist. Hence, the monoids are neither Garside nor Artin. Nevertheless, the authors will show that they carry certain particular elements similar to the fundamental elements in Artin monoids and that, by improving the classical method in combinatorial group theory, they are cancellative monoids. As a result, the authors will show that the word problem can be solved and the center of them is determined.

TTKHCNQG, CLv 2394