Lọc theo danh mục
liên kết website
Lượt truy cập
- Công bố khoa học và công nghệ Việt Nam
Công nghệ gen; nhân dòng vật nuôi;
Huỳnh Kỳ, Văn Quốc Giang, Nguyễn Văn Mạnh, Trần In Đô(1), Nguyễn Thành Tâm, Chung Trương Quốc Khang, Nguyễn Châu Thanh Tùng, Nguyễn Lộc Hiền
Hệ phiên mã giống lúa Trà Lòng 2 dưới tác động của mặn giai đoạn cây con
Transcriptome analysis of Tra Long 2 rice variety under salt stress at seedling stage
Khoa học và Công nghệ Nông nghiệp Việt Nam
2021
1
40 - 45
1859 - 1558
TTKHCNQG, CVv 490
- [1] Zhu; M.; H. Xie; X. Wei; K. Dossa; Y. Yu; S. Hui; G. Tang; X. Zeng; Y. Yu; P. Hu; J Wang (2019), WGCNA analysis of salt-responsive core transcriptome identifies novel hub genes in rice.,Genes 10: 719.
- [2] Zhou; Y.; P. Yang; E Cui; E Zhang; X. Luo; J. Xie (2016), Transcriptome analysis of salt stress responsiveness in the seedlings of dongxiang wild rice (Oryza rufipogon Griff.).,PLOS ONE 11: e0146242. doi: 10.1371 /journal.pone.0146242.
- [3] Zagorchev; L.; P. Kamenova; M. Odjakova (2014), The role of plant cell wall proteins in response to salt stress.,The Scientific World Journal 2014: 764089. doi:l 0.1155/2014/764089.
- [4] (2020), Báo cáo thống kê thiệt hại do thiên tai năm 2020.,http://phongchongthientai.mard.gov.vn/Pages/bang-thong-ke-thiet-hai-do-thien-tai-tu- dau-nam-2020-tinh-den-ngay-27-7-2020-.aspx
- [5] Tuteja; N. (2007), Abscisic acid and abiotic stress signaling.,Plant Signaling & Behavior 2: 135-138.
- [6] Tian; T.; Y Liu; H. Yan; Q. You; X. Yi; Z. Du; W. Xu; Z. Su (2017), agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 up-date.,Nucleic Acids Research 45: W122-W129.
- [7] Tam; N.T. (2019), The genome constitution of rice resources in the Mekong Delta and their association with salinity stress.,
- [8] Stepien; P.; G.N. Johnson (2009), Contrasting responses of photosynthesis to salt stress in the glycophyte arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an al-ternative electron sink.,Plant Physiology 149: 1154-1165.
- [9] Sakai; H.; S.S. Lee; T. Tanaka; H. Numa; J. Kim; Y. Kawahara; H. Wakimoto; C.C. Yang; M. Iwamoto; T. Abe; Y. Yamada; A. Muto; H. Inokuchi; T. Ikemura; T. Matsumoto; T. Sasaki; T. Itoh (2013), Rice Annotation Project Database (RAP- DB): an integrative and interactive database for rice genomics.,Plant Cell Physiol.; 54(2):e6. doi: 10.1093/pcp/pcsl83. PMID: 23299411; PMCID: PMC3583025.
- [10] Picard Toolkit (2019), GitHub Repository.,http://broadinstitute.github.io/picard/
- [11] Munns; R.; M. Tester (2008), Mechanisms of Salinity Tolerance.,Annual Review of Plant Biology 59: 651-681.
- [12] Muchate; N.S.; G.C. Nikalje; N.S. Rajurkar; P. Suprasanna; T.D. Nikam (2016), Plant Salt Stress: Adaptive Responses, Tolerance Mechanism and Bioengineering for Salt Tolerance.,The Botanical Review 82: 371-406.
- [13] Majeed; A.; Z. Muhammad (2019), Salinity: A Major Agricultural Problem-Causes, Impacts on Crop Productivity and Management Strategies.,In: M. Hasanuzzaman, K. R. Hakeem, K. Nahar and H. F. Alharby, editors, Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches. Cham. p. 83-99.
- [14] Love; M.I.; W. Huber; S. Anders (2014), Moderated estimation of fold change and dispersion for RNA- seq data with DESeq2.,Genome biology 15: 550-550.
- [15] Liao; Y.; G.K. Smyth; W. Shi (2014), FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features.,Bioinformatics (Oxford, England) 30: 923-930.
- [16] Li. Y.-F.. Y. Zheng. L.R. Vemireddy. S.K. Panda. S. Jose. A. Ranjan. P. Panda. G. Govindan. J. Cui. K. Wei. M.W. Yaish. G.C. Naidoo. R. Sunkar (2018), Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress.,BMC Genomics 19: 935-935.
- [17] Li; H.; B. Handsaker; A. Wysoker; T. Fennell; J. Ruan; N. Homer; G. Marth; G. Abecasis; R. Durbin (2009), The Sequence Alignment/Map format and SAMtools.,Bioinformatics (Oxford, England) 25: 2078-2079.
- [18] Kim; D.; B. Langmead; S.L. Salzberg (2015), HIS AT: a fast spliced aligner with low memory requirements.,Nature methods 12: 357-360.
- [19] Keel; B.N.; W.M. Snelling (2018), Comparison of Burrows-Wheeler Transform-Based Mapping Algorithms Used in High-Throughput Whole- Genome Sequencing: Application to Illumina Data for Livestock Genomes.,Frontiers in genetics 9: 35-35.
- [20] Kawahara; Y.; M. de la Bastide; J.P. Hamilton; H. Kanamori;W.R. McCombie; S. Ouyang (2013), Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data.,Rice (New York, N.Y.) 6: 4-4.
- [21] Hussain; S.; J.-h. Zhang; C. Zhong; L.-f. Zhu; X.-c. Cao; S.-m. Yu; J.A.Bohr; JJ.Hu; Q.Y.Jin (2017), Effects of salt stress on rice growth, development c-haracteristics, and the regulating ways: A review.,Journal of Integrative Agriculture 16: 2357-2374.
- [22] Ge; L.F.; D.Y. Chao; M. Shi; M.Z. Zhu; J.P. Gao; H.X. Lin (2008), Overexpression of the trehalose- 6-phosphate phosphatase gene OsTPPl confers stress tolerance in rice and results in the activation of stress responsive genes.,Planta 228(1):191-201. doi: 10.1007/S00425-008-0729-X. Epub 2008 Mar 26. PMID: 18365248.
- [23] Chen; S.; Y. Zhou; Y. Chen; J. Gu (2018), Fastp: an ultra-fast all-in-one FASTQ preprocessor.,Bioinformatics 34: i884-i890.
- [24] Chandran; A.K.N.; J.-W. Kim; Y.-H. Yoo; H.L. Park; Y.-J. Kim; M.-H. Cho; K.H.Jung (2019), Transcriptome analysis of rice-seedling roots under soil-salt stress using RNA-Seq method.,Plant Biotechnology Reports 13: 567-578.
- [25] Bolser; D.; D.M. Staines; E. Pritc-hard; P. Kersey (2016), EnsembI Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data.,In: D. Edwards, editor Plant Bioinformatics: Methods and Protocols. Springer New York, New York, NY. P. 115-140.
- [26] Bloom; J.S.; Z. Khan; L. Kruglyak; M. Singh; A.A. Caudy (2009), Measuring differential gene expression by short read sequencing: quantitative comparison to 2-channel gene expression microarrays.,BMC Genomics 10: 221.
