Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,411,148
  • Công bố khoa học và công nghệ Việt Nam

Nguyễn thị Thu Hiền , Lê Thị Hai , Nguyễn Thị Minh Trang , Nguyễn Minh Hiền , Phạm Tấn Thi(1)

Tổng hợp cấu trúc lại hạt nano vàng và vật liệu khung cơ kim bằng phương pháp thủy nhiệt

Hydrothermal synthesis of gold nanoparticles and metal organic framework hybrid structure

Tạp chí Phát triển Khoa học & Công nghệ: Chuyên san Khoa học Tự nhiên

2018

2

We report a hydrothermal synthesis of a hybrid structure between gold nanoparticles and a metal organic framework, ZIF-8 (abbreviated as Au@ZIF-8). Au nanoparticles encapsulated in polyvinylpyrrolidone (PVP) was employed as seeds to grow the framework of ZIF-8. We controlled the position and concentrations of Au nanoparticles on ZIF-8 crystal by adjusting the volume of Au nanoparticles dissolved in DI water during the growth of ZIF-8. Morphology, structure, distribution of the hybrid structure were investigated by transmission microscope, powder xray diffraction, and diffuse reflectance UV-Vis spectroscopy. We tested out catalytic properties of Au@ZIF-8 through the reaction of 2-nitrophenol and NaBH4.

We report a hydrothermal synthesis of a hybrid structure between gold nanoparticles and a metal organic framework, ZIF-8 (abbreviated as Au@ZIF-8). Au nanoparticles encapsulated in polyvinylpyrrolidone (PVP) was employed as seeds to grow the framework of ZIF-8. We controlled the position and concentrations of Au nanoparticles on ZIF-8 crystal by adjusting the volume of Au nanoparticles dissolved in DI water during the growth of ZIF-8. Morphology, structure, distribution of the hybrid structure were investigated by transmission microscope, powder xray diffraction, and diffuse reflectance UV-Vis spectroscopy. We tested out catalytic properties of Au@ZIF-8 through the reaction of 2-nitrophenol and NaBH4.

  • [1] H. Alaein, J.A. Dionne (2012), Plasmonic nanoparticle superlattices as optical frequency magnetic metamaterials,Opt. Express
  • [2] L.L. Gong, W.T. Yao, Z.Q. Liu, A.M. Zheng, et al. (2017), Photoswitching storage of guest molecules in metal-organic frameworks,J. Mater. Chem. A
  • [3] L. Liu, G. Fu, B. Li, X. Lu, W.K. Wong, R.A. Jones (2017), Single-component Eu3+-Tb3+-Gd3+-grafted polymer,RCS Adv.
  • [4] X. Zhang, C. Chen, X. Liu, P. Gao, M. Hu (2017), Series of chiral interpenetrating 3d-4f heterometallic MOFs,J. Solid State Chem.
  • [5] D.M. Chen, N.N. Zhang, C.S. Liu, M. Du (2017), Dual-emitting dye@MOF composite as a self-calibrating sensor for 2,4,6-trinitrophenol,ACS Appl. Mater. Interfaces
  • [6] R. Medishetty, J.K. Zareba, D. Mayer, M. Samoc, R.A. Fischer (2017), Nonlinear optical properties, upconversion and lasing in metal-organic frameworks,Chem. Soc. Rev.
  • [7] Y. Cui, H. He, W. Zhou, B. Chen, G. Qian (2016), Metal-organic frameworks as platforms for functional materials,Acc. Chem. Res.
  • [8] C. Pettinari, F. Marchetti, N. Mosca, G. Tosi, A. Drozdov (2017), Application of metal-organic frameworks,Polym. Int.
  • [9] R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R. Li, et al. (2009), Potential applications of metal-organic frameworks,Coord. Chem. Rev.
  • [10] P.D.C. Dietzel, V. Besikiotis, R. Blom (2009), Application of metal-organic frameworks in storage and separation of methane and carbon dioxide,J. Mater. Chem.
  • [11] M. Eddaoudi, H. Li, O.M. Yaghi (2000), Highly porous and stable metal-organic frameworks,J. Am. Chem. Soc.
  • [12] M. O’Keeffe, O.M. Yaghi (2012), Destructing the crystal structures of metal-organic frameworks,Chem. Rev.
  • [13] A. Bétard, R.A. Fischer (2012), Metal-organic framework thin films,Chem. Rev.
  • [14] D.J. Collins, S. Ma, H.C. Zhou (2010), Hydrogen and methane storage in Metal-organic frameworks,Metal-Organic Frameworks: Design and Application
  • [15] J.L.C. Rowsell, O.M. Yaghi (2004), Metal-organic frameworks: a new class of porous materials,Microporous. Mesoporous. Mat.
  • [16] S.L. James (2003), Metal-organic frameworks,Chem. Soc. Rev.
  • [17] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi (2013), The chemistry and applications of metal-organic frameworks,Science
  • [18] O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim (2003), Recticular synthesis and the design of new materials,Nature
  • [19] H. Alaein, J.A. Dionne (2012), Plasmonic nanoparticle superlattices as optical frequency magnetic metamaterials,Opt. Express, vol. 20, no. 14, pp. 15781–15796
  • [20] L.L. Gong, W.T. Yao, Z.Q. Liu, A.M. Zheng, J.Q. Li, X.F. Feng, L.F. Ma, C.S. Yan, M.B. Luo, F. Luo (2017), Photoswitching storage of guest molecules in metalorganic framework for photoswitchable catalysis: exceptional product, ultrahigh photocontrol, and photomodulated size se-lectivity,J. Mater. Chem. A, vol. 5, no. 17, pp. 7961–7967
  • [21] L. Liu, G. Fu, B. Li, X. Lu, W.K. Wong, R. A. Jones (2017), Single-component Eu3+-Tb3+-Gd3+-grafted polymer with ultra-high color rendering index white-light emission,RCS Adv., vol. 7, no. 11, pp. 6762–6771
  • [22] X. Zhang, C. Chen, X. Liu, P. Gao, M. Hu (2017), Series of chiral interpenetrating 3d-4f heterometallic MOFs: Luminescent sensors and magnetic properties,J. Solid State Chem., vol. 253, pp. 360–366
  • [23] D.M. Chen, N.N. Zhang, C.S. Liu, M. Du (2017), Dual- emitting dye@MOF composite as a self-calibrating sensor for 2,4,6-trinitrophenol,ACS Appl. Mater. Interfaces, vol. 9, no. 29
  • [24] R. Medishetty, J.K. Zareba, D. Mayer, M. Samoc, R. A. Fischer (2017), Nonlinear optical properties, upconversion and lasing in metal-organic frameworks,Chem. Soc. Rev., vol. 46, no. 16, pp. 4976–5004
  • [25] ] Y. Cui, H. He, W. Zhou, B. Chen, G. Qian (2016), Metalorganic frameworks as platforms for functional materials,Acc. Chem. Res., vol. 49, no. 3, pp. 483– 493
  • [26] C. Pettinari, F. Marchetti, N. Mosca, G. Tosi, A. Drozdov (2017), Application of metal-organic frameworks,Polym. Int., vo. 66, no. 6, pp. 731–744
  • [27] R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R. Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang, H.C. Zhou (2009), Potential applications of metal-organic frameworks,Coord. Chem. Rev., vol. 253, no. 23–24, pp. 3042–3066
  • [28] P.D.C. Dietzel, V. Besikiotis, R. Blom (2009), Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide,J. Mater. Chem., vol. 19, no. 113, pp. 7362–7370
  • [29] M. Eddaoudi, H. Li, O.M. Yaghi (2000), Highly porous and stable metal-organic frameworks: structure design and sorption properties,J. Am. Chem. Soc., vol. 122, no. 7, pp. 1391–1397
  • [30] M. O’Keeffe, O.M. Yaghi (2012), Destructing the crystal structures of metal-organic frameworks and related materials into their underlying nets,Chem. Rev., vol. 112, no. 2, pp. 675–702
  • [31] A. Bétard, R.A. Fischer (2012), Metal-organic framework thin films: f-rom fundamentals to applications,Chem. Rev., vol. 112, no. 2, pp. 1055 – 1083
  • [32] D.J. Collins, S. Ma, H.C. Zhou (2010), Hydrogen and methane storage in Metal-organic frameworks,Metal-Organic Frameworks: Design and Application L. R. MacGillivray (Ed.), John Wiley & Sons, Inc., pp. 249–266
  • [33] ]J.L.C. Rowsell, O.M. Yaghi (2004), Metal-organic frameworks: a new class of porous materials,Microporous. Mesoporous. Mat., vol. 73, no. 1 – 2, pp. 3–14
  • [34] S.L. James (2003), Metal-organic frameworks,Chem. Soc. Rev., vol. 32, pp. 276–288
  • [35] H. Furukawa, K.E. Cordova, M. O’Keeffe, O. M. Yaghi (2013), The chemistry and applications of metal-organic frameworks,Science, vol. 341, pp. 1230444-12
  • [36] O.M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim (2003), Recticular synthesis and the design of new materials,Nature, vol. 423, pp. 705–714