



- Công bố khoa học và công nghệ Việt Nam
45
Kỹ thuật điện và điện tử
Cao Thị Thanh, Phan Nguyễn Đức Dược(4), Nguyễn Thị Huyền, Phạm Văn Trình(2), Nguyễn Duy Long(1), Cao Tuấn Anh, Nguyễn Xuân Nghĩa, Trần Đại Lâm, Phan Ngọc Minh, Elena D. Obraztsova, Nguyễn Văn Chúc(3)
Tổng hợp và đặc trưng tính chất điện, điện hóa của màng graphene pha tạp đồng clorua.
Fabrication and electrical, electrochemical c-haracteristics of copper chloride-doped graphene films
Khoa học & công nghệ Việt Nam
2023
03B
7 - 11
1859-4794
TTKHCNQG, CVv 8
- [1] Y. Zhu (2010), Graphene and graphene oxide: Synthesis, properties, and applications.,Adv. Mater., 22, pp.3906-3924.
- [2] N.V. Chuc (2016), Electrochemical immunosensor for detection of atrazine based on polyaniline/graphene.,Journal of Materials Science & Technology, 32, pp.539-544.
- [3] X. Dong (2011), Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure.,Carbon, 49, pp.3672-3678.
- [4] C. Mattevi (2011), A review of chemical vapour deposition of graphene on copper.,J. Mater. Chem., 21, pp.3324-3334.
- [5] Y.Y. Wang (2013), A large-area and contamination-free graphene transistor for liquid-gated sensing applications.,Appl. Phys. Lett., 103, DOI: 10.1063/1.4816764.
- [6] Z. Luo (2011), Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure.,Chem. Mater., 23, pp.1441-1447.
- [7] H. Wang (2012), Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation.,J. Am. Chem. Soc., 134, pp.3627-3630.
- [8] K. Pang (2021), Highly conductive graphene film with high-temperature stability for electromagnetic interference shielding.,Carbon, 179, pp.202-208.
- [9] M.G. Rybin (2018), Modification of graphene electronic properties via controllable gas-phase doping with copper chloride.,Applied Physics Letters, 112, DOI: 10.1063/1.5006001.
- [10] B. Sun (2017), Copper(II) chloride doped graphene oxides as efficient hole transport layer for high performance polymer solar cells.,Organic Electronics, 44, pp.176-182.
- [11] K.P. Wang (2019), Green preparation of chlorine-doped graphene and its application in electrochemical sensor for chloramphenicol detection.,SN Applied Sciences, 157, DOI: 10.1007/s42452-019-0174-4.
- [12] Y. Fu (2018), Simple preparation and highly se-lective detection of silver ions using an electrochemical sensor base on sulfur-doped graphene and a 3, 3’,5,5’-tetramethylbenzidine composite modified electrode.,Analyst, 143, pp.2076-2082.
- [13] K. Chu (2017), Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst suppor.,Materials Science & Engineering C, 81, pp.452-458.
- [14] M.H. Ghanbari (2020), Using a nanocomposite consist of boron-doped reduced graphene oxide and electropolymerized β-cyclodextrin for flunitrazepam electrochemical sensor.,Microchemical Journal, 156, DOI: 10.1016/j. microc.2020.104994.
- [15] H. Teng (2020), Nitrogen-doped graphene and conducting polymer PEDOT hybrids for flexible supercapacitor and electrochemical sensor.,Electrochimica Acta, 355, DOI: 10.1016/j.electacta.2020.136772.
- [16] Y. Ma (2019), Graphene-based transparent conductive films: Material systems, preparation and applications.,Small Methods, 3, DOI: 10.1002/ smtd.201800199.
- [17] N.N. Anh (2020), Solar cell based on hybrid structural SiNW/poly(3,4 ethylenedioxythiophene): Poly(styrenesulfonate)/graphene.,Global Challenges, 4, DOI: 10.1002/gch2.202000010.
- [18] S.P. Lee (2021), Optimizing reduced graphene oxide aerogel for supercapacitor.,Energy Fuels, 35, pp.4559-4569.
- [19] H.S. Hong (2021), Enhanced sensitivity of self-powered NO2 gas sensor to sub-ppb level using triboelectric effect based on surface-modified PDMS and 3D-graphene/CNT network.,Nano Energy, 87, DOI: 10.1016/j.nanoen.2021.106165.
- [20] C.T. Thanh (2021), Electrochemical sensor based on reduced graphene oxide/double-walled carbon nanotubes/octahedral Fe3O4/chitosan composite for glyphosate detection,,Bull. Environ. Contam. Toxicol., 106, pp.1017-1023.
- [21] C.T. Thanh (2018), An interdigitated ISFET-type sensor based on LPCVD grown graphene for ultrasensitive detection of carbaryl.,Sens. Actuators B Chem., 260, pp.78-85.
- [22] P.N.D. Duoc (2020), A novel electrochemical sensor based on double-walled carbon nanotubes and graphene hybrid thin film for arsenic(V) detection.,J. Hazard. Mater., 400, DOI: 10.1016/j.jhazmat.2020.123185.
- [23] H. Murata (2019), High-electrical-conductivity multilayer graphene formed by layer exchange with controlled thickness and interlayer.,Scientific Reports, 9, DOI: 10.1038/s41598-019-40547-0.
- [24] K.I. Bolotin (2008), Ultrahigh electron mobility in suspended graphene.,Solid State Communications, 146, pp.351-355.
- [25] M.D. Stoller (2008), Graphene-based ultracapacitors.,Nano Lett., 8, pp.3498-3502.