



- Công bố khoa học và công nghệ Việt Nam
Bệnh học thuỷ sản
Quách Luyl Đa, Phan Trọng Nghĩa, Trần Thanh Hùng(1), Nguyễn Chí Ngôn
Kiểm thử giải thuật AI trong nhận diện bệnh tôm qua hình ảnh
Testing AI algorithms in images-based identification of shrimp diseases
Khoa học (Đại học Cần Thơ)
2021
CĐTS
192-201
1859-2333
TTKHCNQG, CVv 403
- [1] Zahraee, S.M., Assadi, M.K. & Saidur, R. (2016), Application of artificial intelligence methods for hybrid energy system optimization,Renewable and sustainable energy reviews, 66, 617-630. DOI: 10.1016/j.rser.2016.08.028
- [2] Roell, Y. E., Beucher, A., Møller, P. G., Greve, M. B., & Greve, M. H. (2020), Comparing a Random-Forest-Based Prediction of Winter Wheat Yield to Historical Yield Potential,Agronomy, 10(3), 395
- [3] Powers, David Martin (2011), Evaluation: f-rom precision, recall and F-measure to ROC, informedness, markedness and correlation,Inter. J. of Machine Learning Technology, 2(1), 37-63
- [4] Pongthanapanich, T., Nguyen, K. A. T., & Jolly, C. M. (2019), Risk management practices of small intensive shrimp farmers in the Mekong Delta of Viet Nam,FAO Fisheries and Aquaculture Circular, (C1194), I-20
- [5] McCullagh, P., & Nelder, J. A. (1989), Generalized linear models,Monographs on Statistics and Applied Probability, 37, Chapman & Hall/CRC, 2nd edition, 532 pages. ISBN: 9780412317606
- [6] Okpala, C.O.R., Choo, W.S. & Dykes, G.A. (2014), Quality and shelf life assessment of Pacific white shrimp (Litopenaeus vannamei) freshly harvested and stored on ice,LWT-Food Science and Technology, 55(1), 110-116. DOI: 10.1016/j.lwt.2013.07.020
- [7] Nguyễn Chí Ngôn, Dương Trung Nghĩa & Quách Luyl Đa (2019), Thu thập dữ liệu tôm bệnh,Truy cập 11/08/2020. https://sites.google.com/view/shrimpimage-collection/home
- [8] Nguyen, T. B. T. (2015), Good Aquaculture Practices (VietGAP) and Sustainable Aquaculture Development in Viet Nam,In Romana-Eguia et.al. (2015), Resource enhancement and sustainable aquaculture practices in Southeast Asia: challenges in responsible production of aquatic species:proceedings of the international workshop on resource enhancement and sustainable aquaculture practices in Southeast Asia 2014 (pp. 85-92). Aquaculture Department, Southeast Asian Fisheries Development Center
- [9] MacQueen, J. B. (1967), Some methods for classification and analysis of multivariate observations,Fifth Symposium on Math, Statistics, and Probability. Berkeley, CA, University of California Press: 281–297.
- [10] Lu, D. & Weng, Q. (2007), A survey of image classification methods and techniques for improving classification performance,Inter. J. of Remote sensing, 28(5), 823-870. DOI: 10.1080/01431160600746456
- [11] Liu, Z., Cheng, F. & Zhang, W. (2016), Identification of soft shell shrimp based on deep learning,In 2016 ASABE Annual International Meeting, 162455470, American Society of Agricultural and Biological Engineers. DOI:10.13031/aim.20162455470
- [12] Likas, A., Vlassis, N. and Verbeek, J.J. (2003), The global k-means clustering algorithm,Pattern recognition, 36(2), 451-461. DOI: 10.1016/S0031-3203(02)00060-2
- [13] Hastie, T., Tibshirani, R. & Friedman, J.H. (2009), The elements of statistical learning: data mining, Inference and Prediction, 2nd edn,Springer, New York, USA, 533 pages
- [14] Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. (2016), Deep Learning,Cambridge: MIT press, 800 pages
- [15] Goldberger, J., Hinton, G. E., Roweis, S. T. & Salakhutdinov, R. R. (2004), Neighbourhood components analysis,17th Inter. Conf. on Neural Information Processing Systems, December 2004 (pp. 513-520). DOI: 10.5555/2976040.2976105
- [16] Ghasemi-Varnamkhasti, M., Goli, R., Forina, M., Mohtasebi, S.S., Shafiee, S. & Naderi-Boldaji, M. (2016), Application of image analysis combined with computational expert approaches for shrimp freshness evaluation,International Journal of Food Properties, 19(10), 2202-2222. DOI: 10.1080/10942912.2015.1118386
- [17] Durand, S., Lightner, D. V., Redman, R. M. & Bonami, J. R. (1997), Ultrastructure and morphogenesis of white spot syndrome baculovirus (WSSV),Diseases of Aquatic Organisms, 29(3), 205-211
- [18] Duong-Trung, Nghia, Luyl-Da Quach & Chi-Ngon Nguyen (2019), Learning deep transferability for several agricultural classification problems,Inter. J. of Advanced Computer Science and Applications, 10(1), 58 – 67. http://dx.doi.org/10.14569/IJACSA.2019.0100107
- [19] Cawley, G. C., Talbot, N. L. C. & Girolami, M. (2007), Sparse multinomial logistic regression via Bayesian L1 regularisation,In B. Schölkopf, J. Platt, & T. Hofmann (Eds.), Advances in Neural Information Processing Systems, vol. 19 (pp. 209-216). MIT Press
- [20] Cát Tường (2019), Vietnam shrimp exports started to reverse, website of the Directorate of Fisheries,Ministry of Agriculture and Rural Development, issued 22-Aug-2019
- [21] Breiman, L. (2001), Random Forests,Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324
- [22] Bay H., Tuytelaars T. & Van Gool L. (2006), SURF: Speeded Up Robust Features,In: Leonardis A., Bischof H., Pinz A. (eds) Computer Vision – ECCV 2006, Lecture Notes in Computer Science, vol 3951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11744023_32
- [23] Bao, T.Q., Cuong, T.C., Tu, N.D. & Hieu, L.T. (2019), Designing the Yellow Head Virus Syndrome Recognition Application for Shrimp on an Embedded System,Exchanges: The Interdisciplinary Research Journal, 6(2), 48-63. DOI: https://doi.org/10.31273/eirj.v6i2.309
- [24] Al-Sharafat, W.S. & Reyadh Naoum (2009), Development of Genetic-based Machine Learning for Network Intrusion Detection,Inter. J. of Computer and Information Engineering, 3(7), 1677-1681. DOI: 10.5281/zenodo.10.5281/zenodo.1060305