Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  23,034,982
  • Công bố khoa học và công nghệ Việt Nam

Toán học cơ bản

Lâm Quốc Anh(2), Phạm Thanh Dược(1), Võ Thị Mộng Thúy, Đặng Thị Mỹ Vân

Tính liên tục Hausdorff của ánh xạ nghiệm hữu hiệu yếu cho bài toán tối ưu vector phụ thuộc tham số thông qua tập cải tiến

The Hausdorff continuity of weakly efficient solution mappings to parametric vector optimization problems via improvement sets

Khoa học (Đại học Cần Thơ)

2022

GDĐBSCL

19-25

1859-2333

Trong bài báo này, mô hình bài toán tối ưu vector phụ thuộc tham số được tập trung nghiên cứu thông qua tập cải tiến và khảo sát tính liên tục Hausdorff của ánh xạ nghiệm hữu hiệu yếu cho các bài toán này. Trước tiên, một số tính chất của tập cải tiến được xây dựng. Sau đó, mô hình bài toán tối ưu vector thông qua tập cải tiến và nghiệm hữu hiệu yếu của chúng được đề xuất. Cuối cùng, bằng cách sử dụng các tính chất của tập cải tiến và tính lồi của hàm có giá trị vector, các điều kiện đủ cho tính liên tục Hausdorff của các ánh xạ nghiệm hữu hiệu yếu này được khảo sát.

This paper focuses on studying parametric vector optimization problems via improvement sets and investigating the Hausdorff continuity of weakly efficient solution mappings of these problems. Firstly, properties of improvement sets are discussed. Then, models of parametric vector optimization problems via improvement sets and their weakly efficient solutions are introduced. Finally, by using the properties of improvement sets and convexity conditions of a vectorvalued mapping, sufficient conditions for the Hausdorff continuity of these weak efficient solution mappings are investigated.

TTKHCNQG, CVv 403

  • [1] Zhao, K. Q., & Yang, X. M. (2015), E-Benson proper efficiency in vector optimization,Optimization, 64(4), 739-752. https://doi.org/10.1080/02331934.2013.798321
  • [2] Zhao, K. Q., & Yang, X. M. (2014), E-proper saddle points and E-proper duality in vector optimization with set-valued maps,Taiwanese Journal of Mathematics, 18(2), 483-495.https://doi.org/10.11650/tjm.18.2014.3473
  • [3] Zhao, K. Q., Yang, X. M., & Peng, J. W. (2013), Weak E-optimal solution in vector optimization,Taiwanese Journal ofMathematics, 17(4), 1287-1302. https://doi.org/10.1007/s11590-012-0533-1
  • [4] Zhao, K. Q., & Yang, X. M. (2013), A unified stability result with perturbations in vector optimization,Optimization Letters, 7(8), 1913-1919. https://doi.org/10.1007/s11590-012-0533-1
  • [5] Wei, H. Z., Zuo, X., & Chen, C. R. (2020), Unified vector quasiequilibrium problems via improvement sets and nonlinear scalarization with stability analysis,Numerical Algebra, Control & Optimization, 10(1), 107. https://doi.org/10.3934/naco.2019036
  • [6] Sach, P. H. (2005), New generalized convexity notion for set-valued maps and application to vector optimization,Journal of Optimization Theory and Applications, 125(1), 157-179. https://doi.org/10.1007/s10957-004-1716-4
  • [7] Qiu, Q., & Yang, X. (2010), Some properties of approximate solutions for vector optimization problem with set-valued functions,Journal of Global Optimization, 47(1), 1-12. https://doi.org/10.1007/s10898-009-9452-9
  • [8] Oppezzi, P., & Rossi, A. (2015), Improvement sets and convergence of optimal points,Journal of Optimization Theory and Applications, 165(2), 405-419. https://doi.org/10.1007/s10957-014-0669-5
  • [9] Mao, J., Wang, S., & Han, Y. (2019), The stability of the solution sets for set optimization problems via improvement sets,Optimization, 68(11), 2171-2193. https://doi.org/10.1080/02331934.2019.1579813
  • [10] Maeda, T. (2012), On optimization problems with set-valued objective maps: existence and optimality,Journal of Optimization Theory and Applications, 153(2), 263-279. https://doi.org/10.1007/s10957-011-9952-x
  • [11] Luc, D.T. (2005), Generalized convexity in vector optimization,In Luc, D.T. (Eds.), Handbook of generalized convexity and generalized monotonicity, 195-236
  • [12] Liang, H., Wan, Z., & Zhang, L. (2020), The connectedness of the solutions set for set-valued vector equilibrium problems under improvement sets,Journal of Inequalities and Applications, 2020(1), 1-14. https://doi.org/10.1186/s13660-020-02397-7
  • [13] Lalitha, C. S., & Chatterjee, P. (2015), Stability and scalarization in vector optimization using improvement sets,Journal of Optimization Theory and Applications, 166(3), 825-843.https://doi.org/10.1007/s10957-014-0686-4
  • [14] Kuroiwa, D. (2003), Existence theorems of set optimization with set-valued maps,Journal of Information and Optimization Sciences, 24(1), 73-84 . https://doi.org/10.1080/02522667.2003.10699556
  • [15] Khan, A. A., Tammer, C., & Zalinescu, C. (2016), Set-valued optimization,Springer, Berlin, 781 pages.https://doi.org/10.1007/978-3-642-54265-7
  • [16] Jahn, J., & Ha, T. X. D. (2011), New order relations in set optimization,Journal of Optimization Theory and Applications, 148(2), 209-236.https://doi.org/10.1007/s10957-010-9752-8
  • [17] Jahn, J. (2009), Vector optimization,Springer, Berlin, 470 pages
  • [18] Hu, S., & Papageorgiou, N. (1997), Handbook of multivalued analysis,Volume I: Theory, Kluwer, Boston.https://doi.org/10.1007/978-1-4615-6359-4
  • [19] Hernández, E., Rodríguez-Marín, L., & Sama, M. (2010), On solutions of set-valued optimization problems,Computers and Mathematics with Applications, 60(5), 1401-1408. https://doi.org/10.1016/j.camwa.2010.06.022
  • [20] Gutiérrez, C., Jiménez, B., & Novo, V. (2012), Improvement sets and vector optimization,European J. Oper. Res, 223(2), 304-311.https://doi.org/10.1016/j.ejor.2012.05.050
  • [21] Göpfert, A., Riahi, H., Tammer, C., &Zalinescu, C. (2003), Variational methods in partially ordered spaces,Springer, Berlin
  • [22] Fu, J. Y., & Wang, Y. H. (2003), Arcwise connected cone-convex functions and mathematical programming,Journal of Optimization Theory and Applications, 118(2), 339-352.https://doi.org/10.1023/A:1025451422581
  • [23] Flores-Bazán, F., & Jiménez, B. (2009), Strict efficiency in set-valued optimization,Siam Journal on Control and Optimization, 48(2), 881-908. https://doi.org/10.1137/07070139X
  • [24] Eichfelder, G., & Ha, T. X. D. (2013), Optimality conditions for vector optimization problems with variable ordering structures,Optimization, 62(5), 597-627. https://doi.org/10.1080/02331934.2011.575939
  • [25] Dhingra, M., & Lalitha, C. S. (2017), Set optimization using improvement sets,Yugoslav Journal of Operations Research, 27(2), 153-167.https://doi.org/10.2298/YJOR170115011D
  • [26] Chicco, M., & Rossi, A. (2015), Existence of optimal points via improvement sets,Journal of Optimization Theory and Applications, 167(2), 487-501.https://doi.org/10.1007/s10957-015-0744-6
  • [27] Chicco, M., Mignanego, F., Pusillo, L., & Tijs, S. (2011), Vector optimization problems via improvement sets,Journal of Optimization Theory and Applications, 150(3), 516-529.https://doi.org/10.1007/s10957-011-9851-1
  • [28] Berge, C. (1963), Topological spaces,Oliver and Boyd, London, 213 pages
  • [29] Anh, L. Q., Duoc, P. T., & Tam, T. N. (2020), On the stability of approximate solutions to set-valued equilibrium problems,Optimization, 69(7-8), 1583-1599.https://doi.org/10.1080/02331934.2019.1646744
  • [30] Anh, L. Q., Duoc, P. T., & Tam, T. N. (2017), Continuity of approximate solution maps to vector equilibrium problems,Journal of Industrial & Management Optimization, 13(4), 1685-1699.https://doi.org/10.3934/jimo.2017013
  • [31] Anh, L. Q., & Khanh, P. Q. (2007), On the stability of the solution sets of general multivalued vector quasiequilibrium problems,Journal of Optimization Theory and Applications, 135(2), 271-284.https://doi.org/10.1007/s10957-007-9250-9