Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,509,097
  • Công bố khoa học và công nghệ Việt Nam

Khoa học tự nhiên

BB

Cao Thị Thanh, Nguyễn Thị Huyền(1), Phạm Văn Trình, Nguyễn Văn Chúc, Phan Nguyễn Đức Dược, Nguyễn Duy Long, Cao Tuấn Anh, Nguyễn Xuân Nghĩa, Trần Đại Lâm, Phan Ngọc Minh(2), Nguyễn Văn Chúc*, Elena D. Obraztsova

Tổng hợp và đặc trưng tính chất điện, điện hóa của màng graphene pha tạp đồng clorua

Tạp chí Khoa học và Công nghệ Việt Nam - B

2023

3B

7

Trong nghiên cứu này, các màng mỏng vật liệu graphene (Gr) pha tạp đồng clorua (CuCl) đã được chế tạo trên đế đồng (Cu) bằng phương pháp lắng đọng hóa học pha hơi (CVD) ở nhiệt độ 1000oC trong môi trường hỗn hợp các khí (Ar, H2 và CH4) kết hợp với phương pháp ủ nhiệt ở 220oC để hóa hơi bột CuCl...

  • [1] Y. Zhu, et al. (2010), Graphene and graphene oxide: Synthesis, properties, and applications,Advanced Materials
  • [2] N.V. Chuc, et al. (2016), Electrochemical immunosensor for detection of atrazine based on polyaniline/graphene,Journal of Materials Science & Technology
  • [3] X. Dong, et al. (2011), Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure,Carbon
  • [4] C. Mattevi, et al. (2011), A review of chemical vapour deposition of graphene on copper,Journal of Materials Chemistry
  • [5] Y.Y. Wang, et al. (2013), A large-area and contamination-free graphene transistor for liquid-gated sensing applications,Applied Physics Letters
  • [6] Z. Luo, et al. (2011), Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure,Chemistry of Materials
  • [7] H. Wang, et al. (2012), Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation,Journal of the American Chemical Society
  • [8] K. Pang, et al. (2021), Highly conductive graphene film with high-temperature stability for electromagnetic interference shielding,Carbon
  • [9] M.G. Rybin, et al. (2018), Modification of graphene electronic properties via controllable gas-phase doping with copper chloride,Applied Physics Letters
  • [10] B. Sun, et al. (2017), Copper(II) chloride doped graphene oxides as efficient hole transport layer for high performance polymer solar cells,Organic Electronics
  • [11] K.P. Wang, et al. (2019), Green preparation of chlorine-doped graphene and its application in electrochemical sensor for chloramphenicol detection,SN Applied Sciences
  • [12] Y. Fu, et al. (2018), Simple preparation and highly se-lective detection of silver ions using an electrochemical sensor based on sulfur-doped graphene and a 3,3’,5,5’-tetramethylbenzidine composite modified electrode,Analyst
  • [13] K. Chu, et al. (2017), Electrochemical dopamine sensor based on phosphorus-doped graphene: Highly active metal-free catalyst and metal catalyst support,Materials Science & Engineering C
  • [14] M.H. Ghanbari, et al. (2020), Using a nanocomposite consist of boron-doped reduced graphene oxide and electropolymerized β-cyclodextrin for flunitrazepam electrochemical sensor,Microchemical Journal
  • [15] H. Teng, et al. (2020), Nitrogen-doped graphene and conducting polymer PEDOT hybrids for flexible supercapacitor and electrochemical sensor,Electrochimica Acta
  • [16] Y. Ma, et al. (2019), Graphene-based transparent conductive films: Material systems, preparation and applications,Small Methods
  • [17] N.N. Anh, et al. (2020), Solar cell based on hybrid structural SiNW/poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate)/graphene,Global Challenges
  • [18] S.P. Lee, et al. (2021), Optimizing reduced graphene oxide aerogel for supercapacitor,Energy & Fuels
  • [19] H.S. Hong, et al. (2021), Enhanced sensitivity of self-powered NO₂ gas sensor to sub-ppb level using triboelectric effect based on surface-modified PDMS and 3D-graphene/CNT network,Nano Energy
  • [20] C.T. Thanh, et al. (2021), Electrochemical sensor based on reduced graphene oxide/double-walled carbon nanotubes/octahedral Fe₃O₄/chitosan composite for glyphosate detection,Bulletin of Environmental Contamination and Toxicology
  • [21] C.T. Thanh, et al. (2018), An interdigitated ISFET-type sensor based on LPCVD grown graphene for ultrasensitive detection of carbaryl,Sensors and Actuators B: Chemical
  • [22] P.N.D. Duoc, et al. (2020), A novel electrochemical sensor based on double-walled carbon nanotubes and graphene hybrid thin film for arsenic(V) detection,Journal of Hazardous Materials
  • [23] H. Murata, et al. (2019), High-electrical-conductivity multilayer graphene formed by layer exchange with controlled thickness and interlayer,Scientific Reports
  • [24] K.I. Bolotin, et al. (2008), Ultrahigh electron mobility in suspended graphene,Solid State Communications
  • [25] M.D. Stoller, et al. (2008), Graphene-based ultracapacitors,Nano Letters