Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,069,747
  • Công bố khoa học và công nghệ Việt Nam

Đa dạng sinh học

Phùng Thị Hằng(1), Phan Thành Đạt, Nguyễn Thị Thùy Nhiên, Nguyễn Ngọc Phương Thảo, Nguyễn Trọng Hồng Phúc, Đặng Minh Quân(2), Lý Văn Lợi, Dương Văn Ni

Nghiên cứu đa dạng thành phần loài và đánh giá một số chỉ số đa dạng sinh học cây thuỷ sinh tại các sinh cảnh khác nhau ở huyện Cù Lao Dung, tỉnh Sóc Trăng

Research on species diversity and assessment of biodiversity indices of aquatic plants in different habitats in Cu Lao Dung District, Soc Trang Province

Khoa học (Đại học Cần Thơ)

2022

2

140-150

1859-2333

Nghiên cứu được thực hiện tại Cù Lao Dung trong 2 năm (2018-2020) với mục tiêu đánh giá đa dạng sinh học và tác động của môi trường đến hệ thực vật thuỷ sinh bậc cao. Các sinh cảnh ngập nước được chia thành 3 khu vực nước ngọt, nước lợ và nước mặn với 18 tuyến điều tra và 28 ô tiêu chuẩn. Kết quả về đa dạng thành phần loài thu được 58 loài thuộc 49 chi, 30 họ của 2 ngành là Dương xỉ (Pteridophyta) và Ngọc Lan (Magnoliophyta). Trong ngành Ngọc Lan có tỉ lệ thành phần loài giữa lớp Ngọc Lan và lớp Hành (M/L) là 0,65. Hệ thực vật thuỷ sinh ở khu vực nghiên cứu có các đặc trưng (1) cấu trúc bậc họ với tỉ lệ họ đơn loài rất cao (73,33%); (2) số lượng loài ở các sinh cảnh nước ngọt cao nhất; (3) tỉ lệ loài có tác dụng làm thuốc là 84,48%; (4) Dừa nước (Nypa fruticans) là loài xuất hiện ở tất cả các sinh cảnh với tần suất cao nhất; (5) Tỉ lệ A/F của các loài thuộc 3 sinh cảnh đều thuộc dạng phân bố Contagious; (6) Chỉ số đa dạng Shannon (H) ở sinh cảnh nước ngọt, nước lợ, nước nặm lần lượt là: 5:3,72:3,01. Môi trường tại đây khá ổn định và phù hợp với các nhóm cây thuỷ sinh nhiệt đới.

This study was conducted at the wetland habitat of Cu Lao Dung district in 2 years (2018-2020) with the aim of assessing biodiversity and environmental impacts on aquatic plants. This wetland habitat was divided into 3 areas including freshwater, brackish water and saltwater with 18 transects and 28 standard units. The results of species composition diversity obtained 58 species of 49 genera, 30 families, 2 phyla (Pteridophyta and Magnoliophyta). In the Magnoliophyta phylum, the ratio of the two classes Magnoliopsida and Liliopsida (M/L) was 0.65. The aquatic plants in the study area have the following characteristics: (1) at the level of family taxonomy, the proportion of monotypic families was very high (73.33%); (2) the number of species in freshwater habitats was highest; (3) the percentage of species with medicinal use is 84.48%; (4) Nypa fruticans occurred in all habitats with the highest frequency; (5) the A/F ratios of the species in the three habitats were mostly in Contagious distribution; (6) the Shannon diversity index (H) in freshwater, brackish water, and saltwater was 5: 3,72 : 3,01 respectively. Biodiversity indexes showed that the environment is stable and suitable for tropical aquatic plants.

TTKHCNQG, CVv 403

  • [1] Vermeulen, S., & Koziell, I. (2002), Netegrating Global and Local Values: A Review of Biodiversity Assessment,International Institute for Environment and Development
  • [2] (2000-2007), Thực Vật Chí Việt Nam,
  • [3] Triết, T., Thuyên, L. X., Ni, D. V., Mẫn, L. C., Ngà, N. P., Tùng, N. T., Dũng, D. N., Hoà, N. P. B., & Việt, P. B. (2003), Kết quả khảo sát đất ngập nước vùng Hà Tiên - Kiên Lương, tỉnh Kiên Giang,
  • [4] Tran, T. A. (2019), Land use change driven outmigration: Evidence f-rom three flood-prone communities in the Vietnamese Mekong Delta,Land Use Policy, 88(6), 104157. https://doi.org/10.1016/j.landusepol.2019.104157
  • [5] (2013), Quyết định Phê duyệt Chiến lược quốc gia về đa dạng sinh học đến năm 2020, tầm nhìn đến năm 2030 (Số 1250, QĐ-TTg),http://www2.chinhphu.vn/portal/page/portal/chin hphu/noidungchienluocphattrienkinhtexahoi?_pir ef33_14725_33_14721_14721.strutsAction=Vie wDetailAction.do&_piref33_14725_33_14721_1 4721.docid=1995&_piref33_14725_33_14721_1 4721.substract=
  • [6] Thìn, N. N. (2007), Các Phương Pháp Nghiên Cứu Thực Vật,
  • [7] (2013), The Plant List. Version 1.1.,Published on the Internet. http://www.theplantlist.org/ (accessed 1st January)
  • [8] Stefanidis, K., Sarika, M., & Papastegiadou, E. (2006), Exploring environmental predictors of aquatic macrophytes in water‐dependent Natura 2000 sites of high conservation value: Results f-rom a long‐term study of macrophytes in Greek lakes,Journal of Freshwater Ecology, 21(3), 421–429. https://doi.org/10.1002/aqc.3036
  • [9] Scremin-Dias, E. (2004), Tropical aquatic plants: morphoanatomical Adaptations,K. D. Claro, P. S. Oliverira, & V. Rico-Gray, Tropical biology and conservation management (pp. 84-132). Encyclopedia of Life Support Systems
  • [10] Schneider, B., Cunha, E. R., Marchese, M., & Thomaz, S. M. (2018), Associations between macrophyte life forms and environmental and morphometric factors in a large sub-tropical floodplain,Frontiers in Plant Science, 9(February), 1–10. https://doi.org/10.3389/fpls.2018.00195
  • [11] Rentschler, J., Robbé, S. D. V., & Braese, J. (2020), Tăng cường khả năng chống chịu khu vực ven biển Việt Nam. World bank group,https://openknowledge.worldbank.org/bitstream/han dle/10986/34639/153758ovVN.pdf?sequence=4 &isAllowed=y
  • [12] Pereira, S. A., Trindade, C. R. T., Albertoni, E. F., & Palma-Silva, C. (2012), Aquatic macrophytes as indicators of water quality in subtropical shallow lakes, Southern Brazil,Acta Limnologica Brasiliensia, 24(1), 52–63. https://doi.org/10.1590/S2179- 975X2012005000026
  • [13] Parsons, J. (2001), Aquatic Plant Sampling Protocols,Environmental Assessment Program Olympia, Washington State Department of Ecology, Washington, 01, 30
  • [14] Onaindia, M., Amezaga, I., Garbisu, C., & GarcíaBikuña, B. (2005), Aquatic macrophytes as biological indicators of environmental conditions of rivers in north-eastern Spain,Annales de Limnologie, 41(3), 175–182. https://doi.org/10.1051/limn:20054130175
  • [15] Ogston, A. S., Allison, M. A., Mullarney, J. C., & Nittrouer, C. A. (2017), Sediment- and hydrodynamics of the Mekong Delta: F-rom tidal river to continental shelf,Continental Shelf Research, 147(9), 1–6. https://doi.org/10.1016/j.csr.2017.08.022
  • [16] (2016), Wetlands monitoring & assessment chicopee ưatershed,https://www.mass.gov/doc/wetlands-monitoringand-assessment-chicopee-mawatershed/download
  • [17] Magurran, A. (2004), Measuring Biologcial Diversity,In Blackwell Publishing (p. 256)
  • [18] Madsen, J. D., Wersal, R. M., Tyler, M., & Gerard, P. D. (2006), The distribution and abundance of aquatic macrophytes in swan lake and middle lake, minnesota,Journal of Freshwater Ecology, 21(3), 421–429. https://doi.org/10.1080/02705060.2006.9665019
  • [19] Madsen, J. D., & Wersal, R. M. (2017), A review of aquatic plant monitoring and assessment methods,Journal of Aquatic Plant Management, 55(1), 1–12
  • [20] Larridon, I., Reynders, M., Huygh, W., Bauters, K., Vrijdaghs, A., Leroux, O., Muasya, A. M., Simpson, D. A., & Goetghebeur, P. (2011), Taxonomic changes in C3 cyperus (Cyperaceae) supported by molecular data, morphology, embryography, ontogeny and anatomy53,Plant Ecology and Evolution, 144(3), 327–356. https://doi.org/10.5091/plecevo.2011.6
  • [21] Jenks, M. A. (2005), Plant Abiotic Stress. In forage plant physiology and soil-range relationships,Center for Plant Environmental Stress Physiology Purdue University Indiana, USA
  • [22] Huy, L. Q. (2005), Phương pháp nghiên cứu phân tích định lượng các chỉ số đa dạng sinh học thực vật. Viện Khoa học Lâm nghiệp Việt Nam,http://www.mekonginfo.org/assets/midocs/00015 85-environment-methods-for-quantitativeanalysis-of-flora-species-biodiversityindices.pdf
  • [23] Howard, S., & Pond, A. (2002), A guide to monitoring the ecological quality of ponds and canals using PSYM. Environment Agency, Pond Action, Oxford, 0–14,
  • [24] Hộ, P. H.. (1999), Cây cỏ miền Nam Việt Nam (Quyển I-989),
  • [25] Hiếu, V. Đ., Dương, L. H., Tài, P. M., Hưng, L. M., Nam, L. H., Quỳnh,T. N. & ctv (2020), Báo Cáo Tổng Hợp : Dự án quy hoạch bảo tồn đa dạng sinh học tỉnh Sóc Trăng đến năm 2020,https://sotnmt.soctrang.gov.vn/SiteFolders/stn/47 16/Documents/BaocaoduanQHDDSH2020.pdf
  • [26] Hassoon, I. M., Kassir, S. A., & Altaie, S. M. (2017), A review of plant species identification techniques,International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064, 7(8), 325. https://doi.org/10.21275/ART2019476
  • [27] Hailu, H. (2017), Analysis of vegetation phytosociological c-haracteristics and soil physico-chemical conditions in Harishin rangelands of eastern Ethiopia,Land, 6(1). https://doi.org/10.3390/land6010004
  • [28] Hails, A. J. (1997), Wetlands, biodiversity and the ramsar convention,Convention Bureau, Switzerland
  • [29] Gurnell, A., Shuker, L., & Wharton, G. (2014), Urban river survey manual 2014. 51,http://urbanriversurvey.org/wpcontent/uploads/2014/11/URS-manual-2014.pdf
  • [30] Germ, M., Janež, V., Gaberščik, A., & Zelnik, I. (2021), Diversity of Macrophytes and Environmental Assessment of the Ljubljanica River (Slovenia),Diversity, 13(6), 278. https://doi.org/10.3390/d13060278
  • [31] Eshaghi Rad, J., Manthey, M., & Mataji, A. (2009), Comparison of plant species diversity with different plant communities in deciduous forests,International Journal of Environmental Science and Technology, 6(3), 389–394. https://doi.org/10.1007/bf03326077
  • [32] (2019), Investment in infrastructure construction serving for production conversion appropriate to ecological condition, livelihood improvement, adaptation to climate change in Cu Lao Dung,Socialist republic of Vietnam project management unit no. 2 – Soc Trang province. https://documents1.worldbank.org/curated/pt/802 681568010064168/pdf/Environment-and-SocialImpact-Assessment-in-Cu-Lao-Dung-Soc-TrangProvince.pdf
  • [33] Ellenberg, H., & Mueller D. (2015), A key to Raunkiaer plant life forms with revised subdivisions,Separatdruck aus Ber.geobot. Inst. ETH, Stiftg Rubel,37 (1965/56)
  • [34] Diop, F. N. (2010), Integration of freshwater biodiversity into Africa’S development process: mobilization of information and demonstration sites,Wetlands International Afrique, 2010 (9), 59
  • [35] (2012), Cải thiện sức chống chịu với tác động của biến đổi khí hậu vùng ven biển Đông Nam Á,https://www.iucn.org/sites/dev/files/import/downloa ds/bao_cao_tom_tat_vca_st.pdf
  • [36] Chemeris, E. V., Bobrov, A. A., Lansdown, R. V., & Mochalova, O. A. (2019), The conservation of aquatic vascular plants in Asian Russia,Aquatic Botany, 157(9), 42–54. https://doi.org/10.1016/j.aquabot.2019.02.004
  • [37] Chấn, L. T. (1999), Một số đặc điểm cơ bản của hệ thực vật Việt Nam,
  • [38] Chambers, P. A., Lacoul, P., Murphy, K. J., & Thomaz, S. M. (2008), Global diversity of aquatic macrophytes in freshwater,Hydrobiologia, 595(1), 9–26. https://doi.org/10.1007/s10750-007-9154-6
  • [39] Bryan, K. R., Nardin, W., Mullarney, J. C., & Fagherazzi, S. (2017), The role of cross-shore tidal dynamics in controlling intertidal sediment exchange in mangroves in Cù Lao Dung, Vietnam,Continental Shelf Research, 147(10), 128–143. https://doi.org/10.1016/j.csr.2017.06.014
  • [40] Bowles, J. M. (2004), Guide to plant collection and identification,UWO Herbarium Workshop
  • [41] Besset, M., Gratiot, N., Anthony, E. J., Bouchette, F., Goichot, M., & Marchesiello, P. (2019), Mangroves and shoreline erosion in the Mekong River delta, Viet Nam,Estuarine, Coastal and Shelf Science, 226(1), 106263. https://doi.org/10.1016/j.ecss.2019.106263
  • [42] Bertrand, Y., Pleijel, F., & Rouse, G. W. (2006), Taxonomic surrogacy in biodiversity assessments, and the meaning of Linnaean ranks,Systematics and Biodiversity, 4(2), 149–159. https://doi.org/10.1017/S1477200005001908
  • [43] Bân, N. T. (2005), Danh lục thực vật Việt Nam tập 1,2,3.,
  • [44] Anthony, E. J., Brunier, G., Besset, M., Goichot, M., Dussouillez, P., & Nguyen, V. L. (2015), Linking rapid erosion of the Mekong River delta to human activities,Scientific Reports, 5, 4–9. https://doi.org/10.1038/srep14745
  • [45] An, T. D., Tsujimura, M., Le Phu, V., Kawachi, A., & Ha, D. T. (2014), Chemical C-haracteristics of surface water and groundwater in Coastal Watershed, Mekong Delta, Vietnam,Procedia Environmental Sciences, 20, 712–721. https://doi.org/10.1016/j.proenv.2014.03.085