Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  22,528,984
  • Công bố khoa học và công nghệ Việt Nam

Cây lương thực và cây thực phẩm

Đinh Xuân Hoàn(1), Nguyễn Thị Tho

Di truyền tính kháng ở cấp độ phân tử và ứng dụng công nghệ sinh học trong chọn tạo giống lúa kháng bệnh bạc lá

Molecular genetics of resistance and the application of biotechnology in rice breeding for bacterial blight resistance

Khoa học và Công nghệ Nông nghiệp Việt Nam

2022

CD

13 - 19

1859 - 1558

Bệnh bạc lá do vi khuẩn Xanthomonas oryzae pv. oryzae (Xoo) gây ra là một loại bệnh hại nghiêm trọng trên lúa có thể gây thiệt hại 50% năng suất. Sử dụng giống lúa kháng bệnh giúp kiểm soát một cách hiệu quả bệnh hại này. Các nghiên cứu về QTL (Quantitative trait locus)/gen kháng bệnh bạc lá cũng như nghiên cứu tương tác ký sinh - ký chủ ở cấp độ phân tử đã góp phần đẩy mạnh công tác chọn tạo giống lúa kháng bệnh bạc lá. Đến nay, 46 gen kháng vi khuẩn Xoo đã được xác định, trong đó 28 gen trội. 18/46 gen kháng vi khuẩn Xoo đã được phân lập bằng các phương pháp khác nhau. Bộ gen hoàn chỉnh của 4 nòi Xoo đã được công bố, chứa khoảng 5 triệu nucleotide với 9 - 19 gen mã hóa protein gây bệnh. Một số kỹ thuật sinh học phân tử như chọn giống bằng chỉ thị phân tử (Marker-assisted se-lection - MAS) và chỉnh sửa gen bằng CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Cas9) đã được ứng dụng giúp đẩy nhanh quá trình chọn tạo giống lúa kháng bệnh bạc lá.
 

The bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is a severe rice disease that can cause yield losses of up to 50%. Using resistant rice varieties control effectively this disease. Studies on QTL (Quantitative trait locus)/ genes for blight resistance as well as the study of host-pathogen interaction at the molecular level have contributed supporting the breeding of resistant rice varieties. To date, 46 genes conferring resistance to Xoo have been identified, of which 28 were conferred by single dominant genes. 18/46 Xoo resistance genes have been isolated by various approaches. The complete genome of 4 isolates of Xoo has been published, containing about 5 million nucleotides with 9-19 genes encoding pathogen effectors. A number of molecular biology techniques such as marker-assisted se-lection (MAS) and gene editing by Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 - CRISPR/Cas9) have been applied to promote molecular biology to speed up the process of se-lecting rice varieties resistant to blight disease.
 

TTKHCNQG, CVv 490

  • [1] Zhou; J.; Peng Z.; Long J.; Sosso D.; Liu B.; Eom J. S.; Huang S.; Liu S.; Vera Cruz C.; F-rommer W. B. (2015), Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice.,The Plant Journal, 82 (4): 632-643.
  • [2] Zhao; B.; Ardales E.; Brasset E.; Claflin L.; Leach J.; Hulbert S. (2004), The Rxo1/Rba1 locus of maize controls resistance reactions to pathogenic and non-host bacteria.,Theoretical Applied Genetics, 109 (1): 71-79.
  • [3] Zhang; S.; Song W.-Y.; Chen L.; Ruan D.; Taylor N.; Ronald P.; Beachy R.; Fauquet C. (1998), Transgenic elite indica rice varieties, resistant to Xanthomonas oryzae pv. oryzae.,Molecular Breeding, 4 (6): 551-558.
  • [4] Zeng; X.; Luo Y.; Vu N. T. Q.; Shen S.; Xia K.; Zhang M. (2020), CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty.,BMC Plant Biology, 20 (1): 1-11.
  • [5] Zafar; K.; Khan M. Z.; Amin I.; Mukhtar Z.; Yasmin S.; Arif M.; Ejaz K.; Mansoor S. (2020), Precise CRISPR- Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene.,Frontiers in Plant Science, 11 575.
  • [6] Yang; B.; Sugio A.; White F. F. (2006), Os8N3 is a host disease-susceptibility gene for bacterial blight of rice.,Proceedings of the National Academy of Sciences of the United States, 103 (27): 10503-10508.
  • [7] Xu; Z.; Xu X.; Gong Q.; Li Z.; Li Y.; Wang S.; Yang Y.; Ma W.; Liu L.; Zhu B. (2019), Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice.,Molecular Plant, 12 (11): 1434-1446.
  • [8] Xiang; Y.; Cao Y.; Xu C.; Li X.; Wang S. (2006), Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26.,Theoretical Applied Genetics, 113 (7): 1347-1355.
  • [9] Wang; S.; Liu W.; Lu D.; Lu Z.; Wang X.; Xue J.; He X. (2020), Distribution of Bacterial Blight Resistance Genes in the Main Cultivars and Application of Xa23 in Rice Breeding.,Frontiers in Plant Science, 11 1363.
  • [10] Wang; C.; Zhang X.; Fan Y.; Gao Y.; Zhu Q.; Zheng C.; Qin T.; Li Y.; Che J.; Zhang M. (2015), XA23 is an executor R protein and confers broad-spectrum disease resistance in rice.,Molecular Plant, 8 (2): 290-302.
  • [11] Tian; D.; Wang J.; Zeng X.; Gu K.; Qiu C.; Yang X.; Zhou Z.; Goh M.; Luo Y.; Murata-Hori M. (2014), The rice TAL effector–dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum.,The Plant Cell, 26 (1): 497-515.
  • [12] Streubel; J.; Pesce C.; Hutin M.; Koebnik R.; Boch J.; Szurek B. (2013), Five phylogenetically close rice SWEET genes confer TAL effector‐mediated susceptibility to Xanthomonas oryzae pv. oryzae.,New Phytologist, 200 (3): 808-819.
  • [13] Strauß; T.; Van Poecke R. M.; Strauß A.; Römer P.; Minsavage G. V.; Singh S.; Wolf C.; Strauß A.; Kim S.; Lee H.-A. (2012), RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome.,Proceedings of the National Academy of Sciences, 109 (47): 19480-19485.
  • [14] Singh; S.; Sidhu J.; Huang N.; Vikal Y.; Li Z.; Brar D.; Dhaliwal H.; Khush G. (2001), Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted se-lection into indica rice cultivar PR106.,Theoretical Applied Genetics, 102 (6): 1011-1015.
  • [15] Sanchez; A.; Brar D.; Huang N.; Li Z.; Khush G. (2000), Sequence tagged site marker‐assisted se-lection for three bacterial blight resistance genes in rice.,Crop Science, 40 (3): 792-797.
  • [16] Salzberg; S. L.; Sommer D. D.; Schatz M. C.; Phillippy A. M.; Rabinowicz P. D.; Tsuge S.; Furutani A.; Ochiai H.; Delcher A. L.; Kelley D. (2008), Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99 A.,BMC genomics, 9 (1): 1-16.
  • [17] Römer; P.; Hahn S.; Jordan T.; Strauss T.; Bonas U.; Lahaye T. (2007), Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene.,Science, 318 (5850): 645-648.
  • [18] Ribaut; J.-M.; Hoisington D. (1998), Marker-assisted se-lection: new tools and strategies.,Trends in Plant Science, 3 (6): 236-239.
  • [19] Ratanasut; K.; Rod-In W.; Sujipuli K. (2017), In planta Agrobacterium-mediated transformation of rice.,Rice Science, 24 (3): 181-186.
  • [20] Qian; Q.; Guo L.; Smith S. M.; Li J. (2016), Breeding high- yield superior quality hybrid super rice by rational design.,National Science Review, 3 (3): 283-294.
  • [21] Pruitt; R. N.; Schwessinger B.; Joe A.; Thomas N.; Liu F.; Albert M.; Robinson M. R.; Chan L. J. G.; Luu D. D.; Chen H. (2015), The rice immune receptor XA21 recognizes a tyrosine-sulfated protein f-rom a Gram- negative bacterium.,Science Advances, 1 (6): e1500245.
  • [22] Pradhan; S.; Barik S.; Nayak D.; Pradhan A.; Pandit E.; Nayak P.; Das S.; Pathak H. (2020), Genetics, Molecular Mechanisms and Deployment of Bacterial Blight Resistance Genes in Rice.,Critical Reviews in Plant Sciences, 39 (4): 360-385.
  • [23] Ochiai; H.; Inoue Y.; Takeya M.; Sasaki A.; Kaku H. (2005), Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and in-sertion sequences to its race diversity.,Japan Agricultural Research Quarterly: JARQ, 39 (4): 275-287.
  • [24] Nguyen; T. T.; Quang V. H.; Van Tan M.; Lam V. Đ.; Toshitsugu N.; Hue N. T.; Hue N. T.; Long N. V.; Van Hoan N.; Van Liet V. (2018), Marker-assisted pyramiding of Xa21 and Xa7 genes conferring resistance to bacterial leaf blight in indica cultivar Bacthom7.,African Journal of Biotechnology, 17 (50): 1389-1396.
  • [25] Nguyen; H. T.; Vu Q. H.; Van Mai T.; Nguyen T. T.; Vu L. D.; Nguyen T. T.; Nguyen L. V.; Vu H. T. T.; Nong H. T.; Dinh T. N. (2018), Marker-assisted se-lection of Xa21 conferring resistance to bacterial leaf blight in Indica rice cultivar LT2.,Rice Science, 25 (1): 52-56.
  • [26] Narayanan; N.; Baisakh N.; Vera Cruz C.; Gnanamanickam S.; Datta K.; Datta S. (2002), Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50.,Crop Science, 42 (6): 2072-2079.
  • [27] Liu; W.; Liu J.; Triplett L.; Leach J. E.; Wang G.-L. (2014), Novel insights into rice innate immunity against bacterial and fungal pathogens.,Annual Review of Phytopathology, 52: 213-241.
  • [28] Li; X.; Kapos P.; Zhang Y. (2015), NLRs in plants.,Current Opinion in Immunology, 32: 114-121.
  • [29] Li; C.; Li W.; Zhou Z.; Chen H.; Xie C.; Lin Y. (2020), A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene‐ free bacterial blight‐resistant rice.,Plant Biotechnology Journal, 18 (2): 313.
  • [30] Lee; B.-M.; Park Y.-J.; Park D.-S.; Kang H.-W.; Kim J.-G.; Song E.-S.; Park I.-C.; Yoon U.-H.; Hahn J.-H.; Koo B.-S. (2005), The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice.,Nucleic Acids Research, 33 (2): 577-586.
  • [31] Kumar; A.; Kumar R.; Sengupta D.; Das S.N.; Pandey M.K.; Bohra A.; Sharma N.K.; Sinha P.; SkH.; Ghazi I.A. (2020), Deployment of genetic and genomic tools toward gaining a better understanding of rice- Xanthomonas oryzae pv. oryzae interactions for development of durable bacterial blight resistant rice.,Frontiers in Plant Science, 11: 1152.
  • [32] Jiang; G.-H.; Xia Z.-H.; Zhou Y.-L.; Wan J.; Li D.-Y.; Chen R.-S.; Zhai W.-X.; Zhu L.-H. (2006), Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1.,Molecular Genetics Genomics, 275 (4): 354-366.
  • [33] Jiadao; W.; Jianbo Y.; Chuanwan X.; Li L.; Taihe X.; Dahu N.; Xiufeng W.; Shirong J.; Yixiong T.; Shiping Z. (2001), Study on resistance gene to bacterial blight Xa21 transgenic rice and their hybrid combinations.,Acta Agronomica Sinica, 27 (1): 29-34.
  • [34] Ji; Z.; Ji C.; Liu B.; Zou L.; Chen G.; Yang B. (2016), Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance.,Nature Communications, 7 (1): 1-9.
  • [35] Ji; C.; Ji Z.; Liu B.; Cheng H.; Liu H.; Liu S.; Yang B.; Chen G. (2020), Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors.,Plant Communications, 1 (4): 100087.
  • [36] Huguet; J.; Peng Z.; Yang B.; Yin Z.; Liu S.; White F. (2016), Complete genome sequence of the African strain AXO1947 of Xanthomonas oryzae pv. oryzae.,Genome Announcements, 4 (1):
  • [37] Huang; N.; Angeles E.; Domingo J.; Magpantay G.; Singh S.; Zhang G.; Kumaravadivel N.; Bennett J.; Khush G. (1997), Pyramiding of bacterial blight resistance genes in rice: marker-assisted se-lection using RFLP and PCR.,Theoretical Applied Genetics, 95 (3): 313-320.
  • [38] Hu; K.; Cao J.; Zhang J.; Xia F.; Ke Y.; Zhang H.; Xie W.; Liu H.; Cui Y.; Cao Y. (2017), Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement.,Nature Plants, 3 (3): 1-9.
  • [39] Gu; K.; Yang B.; Tian D.; Wu L.; Wang D.; Sreekala C.; Yang F.; Chu Z.; Wang G.-L.; White F. F. (2005), R gene expression induced by a type-III effector triggers disease resistance in rice.,Nature, 435 (7045): 1122-1125.
  • [40] Fukagawa; N. K.; Ziska L. H. (2019), Rice: importance for global nutrition.,Journal of Nutritional Science Vitaminology, 65 (Supplement): S2-S3.
  • [41] Dinh; H. X.; Singh D.; Periyannan S.; Park R. F.; Pourkheirandish M. (2020), Molecular genetics of leaf rust resistance in wheat and barley.,Theoretical Applied Genetics, 133 (7): 2035-2050.
  • [42] Decreux; A.; Messiaen J. (2005), Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium- induced conformation.,Plant Cell Physiology, 46 (2): 268-278.
  • [43] Chen; X.; Liu P.; Mei L.; He X.; Chen L.; Liu H.; Shen S.; Ji Z.; Zheng X.; Zhang Y. (2021), Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice.,Plant Communications, 2 (3): 100143.
  • [44] Chen; S.; Wang C.; Yang J.; Chen B.; Wang W.; Su J.; Feng A.; Zeng L.; Zhu X. (2020), Identification of the novel bacterial blight resistance gene Xa46 (t) by mapping and expression analysis of the rice mutant H120.,Scientific Reports, 10 (1): 1-11.
  • [45] Chandran; D. (2015), Co‐option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance.,IUBMB Life, 67 (7): 461-471.
  • [46] Angeles-Shim; B.; Shim J.; Vinarao B.; Lapis S.; Singleton J. (2020), A novel locus f-rom the wild allotetraploid rice species Oryza latifolia Desv. confers bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice (O. sativa).,PloS one, 15 (2): e0229155.