Lọc theo danh mục
  • Năm xuất bản
    Xem thêm
  • Lĩnh vực
liên kết website
Lượt truy cập
 Lượt truy cập :  20,724,056
  • Công bố khoa học và công nghệ Việt Nam

Viễn thám

Đỗ Thị Nhung, Nguyễn Thị Diễm My, Phạm Văn Mạnh, Phạm Vũ Đông, Bùi Quang Thành, Nguyễn Văn Tuấn, Phạm Minh Hải(1)

Nghiên cứu mô hình phát hiện rác thải nhựa ven biển sử dụng ảnh máy bay không người lái và mạng nơ-ron tích chập sâu

Study model for detection on coastal plastic waste using unmanned aerial vehicle image and deep convolutional neural network

Khoa học Đo đạc và Bản đồ

2021

49

21-29

0866-7705

Rác thải nhựa tại các khu vực ven biển có nguồn gốc do các hoạt động của con người và đang trở thành mối nguy cho môi trường biển bởi số lượng lớn và khó phân hủy. Chúng đe dọa đến hệ động vật biển và phá hủy hệ sinh thái biển, gây ô nhiễm môi trường và làm giảm giá trị cảnh quan của bãi biển. Các chương trình giám sát và các biện pháp giảm thiểu đã được đưa ra để giải quyết vấn đề này trên toàn thế giới, với sự hỗ trợ ngày càng nhiều của công nghệ hiện đại và tự động hóa các quá trình phân tích. Hình ảnh từ máy bay không người lái (UAV) và mạng nơ-ron tích chập sâu (DCNN) có thể được sử dụng hiệu quả để phát hiện, xác định và giám sát loại rác thải nhựa ven biển. Nghiên cứu này đề xuất một thuật toán phát hiện rác thải nhựa ven biển dựa trên cách tiếp cận mô hình DCNN có khả năng học từ dữ liệu không có cấu trúc hoặc không được gắn nhãn. Mô hình học máy dựa trên mạng nơ-ron tích chập sâu đã được đào tạo và thử nghiệm bằng cách sử dụng 95 hình ảnh được chụp từ Phantom 4 Pro với camera loại CMOS 1 inch có độ phân giải 20MP khu vực ven biển Hội An (Quảng Nam). Kết quả cho thấy, độ chính xác trong phân loại hình ảnh rác thải nhựa ven biển và xác nhận chéo lần lượt là 0,87 và 0,83. Nghiên cứu nhằm cung cấp một cách tiếp cận mới cho các nhà nghiên cứu, nhà quản lý vùng ven biển có ý định sử dụng ảnh UAV để giám sát và đánh giá mối đe dọa môi trường từ các mảnh rác thải biển. Tuy nhiên, việc giám sát tự động vẫn là một thách thức về công nghệ và cần có những nghiên cứu thêm để cải thiện độ chính xác của các thuật toán hiện tại trong tương lai.

Plastic waste in coastal areas originating from human activities is becoming a danger to the marine environment because of its large quantity and difficulty to decompose. Consequently, they have damaged drastically marine ecosystems as well as the above-ground environments. Plastic wastes monitoring and prevention programs have been brought into focus over the world and supported by modern technologies. Unmanned Aerial vehicles (UAV) and Deep Convolutional neural networks (DCNN) have been well known for being highly effective for monitoring, detecting, and classifying plastic waste in coastal areas. This study proposes an algorithm for detecting plastic wastes by exploiting DCNN that was trained with labeled spatial data. The deep network was trained and tested with 95 images from Phantom 4 Pro UAV with CMOS camera-equipped flying over Hoi An coastal (Quang Nam province). The results that our network can detect plastic wastes with precision and cross-validation were 0.87 and 0.83, respectively. To conclude, this study provides a new approach for researchers and authorities to extend the UAV image source for monitoring and evaluating the impacts of plastic wastes on coastal areas. Nevertheless, automatic monitoring has still remained a challenging task and needs to be further studied with modern algorithms in the future.

TTKHCNQG, CVv 362